Exotic hadrons at LHCb

Hadron 2019

Nicole Skidmore On behalf of LHCb

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

August 2019

Table of Contents

Exotic mesons at LHCb

- Observation of the $\Lambda_b^0 o \chi_{c1}(3872) pK^-$ decay JHEP, arXiv:1907.00954(2019)
- Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 o \eta_c(1S) {\cal K}^+\pi^-$ EPJ. C78 1019(2018)
- MI Observation of Exotic Contributions to $B^0 o J/\psi K^+\pi^-$ PRL 122 152002(2019)
- Beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum JHEP 10 086(2018)

Exotic baryons at LHCb

- Observation of a narrow pentaquark state, P_c(4312)⁺, and of two-peak structure of the P_c(4450)⁺ PRL 122, 222001 (2019)
- A search for weakly decaying b-flavored pentaquarks PRD 97, 032010 (2017)
- $B^0_{(s)} \rightarrow J/\psi p \bar{p}$ and precision measurements of the $B^0_{(s)}$ masses PRL 122 191804 (2019)

3 A look to run 3 and beyond

Table of Contents

Exotic mesons at LHCb

- Observation of the $\Lambda_b^0 o \chi_{c1}(3872) pK^-$ decay JHEP, arXiv:1907.00954(2019)
- Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 o \eta_c(1S) {\cal K}^+\pi^-$ EPJ. C78 1019(2018)
- MI Observation of Exotic Contributions to $B^0 o J/\psi K^+\pi^-$ PRL 122 152002(2019)
- Beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum JHEP 10 086(2018)

Exotic baryons at LHCb

- Observation of a narrow pentaquark state, P_c(4312)⁺, and of two-peak structure of the P_c(4450)⁺ PRL 122, 222001 (2019)
- A search for weakly decaying b-flavored pentaquarks PRD 97, 032010 (2017)
- $B^0_{(s)} o J/\psi par p$ and precision measurements of the $B^0_{(s)}$ masses PRL 122 191804 (2019)

3 A look to run 3 and beyond

Observation of $\chi_{c1}(3872)$ in baryon decays

Far from (well predicted) charmonium states, narrower than expected for above open charm threshold - exotic charmonium state

 $\chi_{c1}(3872)$ to date studied only in *b*-meson decays - extend to baryon decays

Observation of $\chi_{c1}(3872)$ in baryon decays

First observation of $\Lambda_b^0 \to \chi_{c1}(3872) p K^-$ with $\chi_{c1}(3872) \to J/\psi \pi^+ \pi^-$ decays

$$\mathcal{B}(\Lambda_b^0 \to \chi_{c1}(3872)pK^-) \times \mathcal{B}(\chi_{c1}(3872) \to J/\psi\pi^+\pi^-) = (1.24 \pm 0.25^{+0.23}_{-0.19}) \times 10^{-6}$$

58 ± 15% of signal decays proceed through 2-body $\chi_{c1}(3872)\Lambda^0(1520)$ decay compared to a fraction of 6 ± 2% in the control mode $\Lambda_b^0 \rightarrow \psi(2S)pK^-$

Exotic states in $B^0 o \eta_c(1S) K^+ \pi^-$

Many interpretations of the observed charmonium-like Z_c exotic states predict another exotic state decaying to $\eta_c(1S)\pi^-$ (PRD87,091501(2013), PRL111, 162003(2013), PRD71, 014028(2005))

Exotic resonance predicted in $\eta_c(1S)\pi^-$

Dalitz plot analysis of $B^0 o \eta_c(1S) K^+ \pi^-$ decays performed where $\eta_c(1S) o p \bar{p}$

Exotic states in $B^0 o \eta_c(1S) K^+ \pi^-$

 K^{*0} resonances and NR component alone cannot describe the data - allow a Z_c component with floating mass and width

First evidence $(> 3\sigma)$ for an exotic state decaying to 2 pseudoscalars

First measurement of branching fraction:

$$\mathcal{B}(B^0 o \eta_c(1S)K^+\pi^-) = (5.73 \pm 0.24 \pm 0.13 \pm 0.66) imes 10^{-4}$$

Nicole Skidmore (Physikalisches Institut, Heidelberg)

Conventional states only

Exotic Contributions to $B^0 \rightarrow J/\psi K^+\pi^-$

Exotic $Z(4430)^- \rightarrow \psi(2S)\pi^-$ observed by LHCb in 2014 (PRL 112, 22202) Belle report another exotic $Z(4200)^-$ in $J/\psi\pi^-$ system (PRD 90, 112009(2014))

 $B^0 o \psi(') K^+ \pi^-$ decay dominated by many, overlapping, poorly measured K_J^* states

Model independent method only requires knowledge of highest spin K_J^* for given $m_{K^+\pi^-}$

Dataset allows for a 4-D angular analysis in 35 bins of $m_{K^+\pi^-}$. Significantly greater sensitivity to exotic components than previous 2-D analyses

Exotic Contributions to $B^0 \rightarrow J/\psi K^+ \pi^{-1}$

Assumption that decay can be described only using K_J^* states ruled out at $> 5\sigma$

Model independent method can only indicate presence of exotic contributions need model dependent analysis to determine further properties of these structures In search for exotics most progress made in charmonium sector - exotics with minimal quark content $c\bar{c}qq'(q'')$ - what about bottomonium?

Two tetraquarks in bottomonium sector seen in decays of $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ decays by Belle - $Z_b(10610)$ and $Z_b(10650)$

No exotic hadron has been observed composed of more than 2 heavy quarks Predictions for a $X_{b\bar{b}b\bar{b}}$ tetraquark state with mass [18.4, 18.8] GeV close to but below $\eta_b\eta_b$ threshold Implies decay to $\Upsilon(nS)l^+l^ (l = e, \mu)$

Beautiful tetraquarks

Search for a possible exotic tetraquark state composed of 2 *b* and 2 \bar{b} quarks decaying to $\Upsilon(1S)\mu^+\mu^-$

Search 17.5 $< m(2\mu^+2\mu^-) <$ 20.0 GeV range for an excess

No excess seen at any mass hypothesis Upper limits set on product of $X_{b\bar{b}b\bar{b}}$ production cross-section and branching fraction as a function of $X_{b\bar{b}b\bar{b}}$ mass

Exotic mesons at LHCb

- Observation of the $\Lambda^0_b o \chi_{c1}(3872) pK^-$ decay JHEP, arXiv:1907.00954(2019)
- ullet Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 o\eta_c(1S)K^+\pi^-$ EPJ. C78 1019(2018)
- MI Observation of Exotic Contributions to $B^0 o J/\psi K^+\pi^-$ PRL 122 152002(2019)
- Beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum JHEP 10 086(2018)

Exotic baryons at LHCb

- Observation of a narrow pentaquark state, P_c(4312)⁺, and of two-peak structure of the P_c(4450)⁺ PRL 122, 222001 (2019)
- A search for weakly decaying b-flavored pentaquarks PRD 97, 032010 (2017)
- $B^0_{(s)} \rightarrow J/\psi p \bar{p}$ and precision measurements of the $B^0_{(s)}$ masses PRL 122 191804 (2019)

3 A look to run 3 and beyond

In 2015 LHCb observed exotic contributions decaying to $J/\psi p$ in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays Exotic contributions near 4450 MeV supported by model independent analysis at more than 9σ (PRL117.082002 (2016))

Nine-fold increase in statistics for 2019 analysis! Structure at 4312 MeV evident and $P_c(4450)^+$ resolved into 2 narrower structures

New structures narrow - use 1D mass fit with BW amplitudes to begin to analyse nature. Three types of fit performed resulting in different background composition/shape :

-7.3 σ for new P_c (4312) -5.4 σ for 2-peak structure rather than single peak at 4450 MeV -Fits with/without a broad P_c both describe data well-full amplitude analysis required with comprehensive understanding of dominant $\Lambda^* \rightarrow pK^-$ spectrum

State	<i>M</i> [MeV]	Г [MeV]	(95% CL)
$P_{c}(4312)^{+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	(< 27)
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)
$P_{c}(4457)^{+}$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(< 20)

Range of alternative fits performed including ones that take into account interference effects between BW amplitudes No significant change to fit-quality with respect to incoherent sum of BW, large deviations in P_c parameters added as systematic

uncertainty

Allowing interference between P_c (4312) and broad P_c PRL 122, 222001 (2019)

State	<i>M</i> [MeV]	Г [MeV]	(95% CL)
$P_{c}(4312)^{+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$	(< 27)
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$	(< 20)

 $P_c(4457)^+$ peaks at $\Lambda_c^+(2595)\overline{D}^0$ threshold... possible triangle diagram involving $D_{s1}(2860)^-$?

PRL 122, 222001 (2019)

Nicole Skidmore (Physikalisches Institut, Heidelberg)

Narrow width and proximity to $\Sigma_c^+ D^{(\bar{*})0}$ thresholds suggests baryon-meson molecules

JPAC analysis of $P_c(4312)^+$ lineshape indicates attractive effect of $\Sigma_c^+ \bar{D^0}$ channel not strong enough to form a bound state (JPAC: arXiv:1904.10021) See talks "Amplitude Analysis at JPAC" and "Analysis tools in searching for resonances"

b-flavored pentaquarks

Skyrme model predicts that the heavier the constituent quarks the more tightly bound the pentaquark - more stable state *Proc. R. Soc. A260, 127(1961)*

Investigate existence of pentaquark states containing a single b or \overline{b} quark that decays weakly

Mode	Quark content	Decay mode	Search window
I	$\overline{b}duud$	$P^+_{B^0 p} ightarrow J\!/\psi K^+ \pi^- p$	4668–6220 MeV
II	$b\overline{u}udd$	$P^{-}_{\Lambda^0_L\pi^-} \rightarrow J/\psi K^-\pi^- p$	4668–5760 MeV
Ш	bduud	$P^+_{\Lambda^0_t\pi^+} o J\!/\psi K^-\pi^+ p$	4668–5760 MeV
IV	bsuud	$P^{+}_{B^0_s p} o J/\psi \phi p$	5055–6305 MeV

b-flavored pentaquarks

Perform scan in each modes' $m_{J/\psi hhh}$ distribution in 4 MeV steps No significant evidence for signal - set 90% CL upper limits on R

$$R = rac{\sigma(pp o P_B X) \cdot \mathcal{B}(P_B o J/\psi X)}{\sigma(pp o \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 o J/\psi K^- p)}$$

Exotic contributions to $B^0_{(s)} \rightarrow J/\psi p\bar{p}$

Decay modes are suppressed $B_s^0 \rightarrow J/\psi p \bar{p}$ - OZI-suppressed

Can be enhanced through Exotic states in $J/\psi p$ system, glueballs in $p\bar{p}$ system

 $B^0_d
ightarrow J/\psi p ar p$ - Cabibbo suppressed

Gluonic penguin diagram

Exotic contributions to $B^0_{(s)} \rightarrow J/\psi p\bar{p}$

LHCb searches for
$$B^0_{(s)} \rightarrow J/\psi p \bar{p}$$

Run 1 + 2015 + 2016

-11.5 σ for B^0 mode -19.5 σ for B_s^0 mode

-2.8 σ observed for B_s^0 mode -No $B^0 \rightarrow J/\psi p \bar{p}$ observed

Exotic contributions to $B^0_{(s)} \rightarrow J/\psi p\bar{p}$

 $\begin{array}{l} \mbox{Branching fraction results:} \\ {\cal B}(B^0_s \to J/\psi p \bar{p}) = (3.58 \pm 0.19 \pm 0.31) \times 10^{-6} \\ {\cal B}(B^0 \to J/\psi p \bar{p}) = (4.51 \pm 0.40 \pm 0.43) \times 10^{-7} \end{array}$

 B_s^0 mode branching fraction 2 orders of magnitude greater than theory predictions without resonant contributions $_{\rm EPJ.\ C75,\ 101(2015)}$

Will perform full Dalitz plot analysis for exotic searches

Perform $B^0_{(s)}$ mass measurements using $B^0_{(s)} \rightarrow J/\psi p \bar{p}$ due small Q-value

Worlds best single measurements:

 $m(B^0) = 5279.74 \pm 0.30 \pm 0.10 \text{MeV}$ $m(B_s^0) = 5366.85 \pm 0.19 \pm 0.13 \text{MeV}$

Exotic mesons at LHCb

- Observation of the $\Lambda^0_b o \chi_{c1}(3872) pK^-$ decay JHEP, arXiv:1907.00954(2019)
- Evidence of $\eta_c(1S)\pi^-$ resonance in $B^0 o \eta_c(1S)K^+\pi^-$ EP.J. C78 1019(2018)
- MI Observation of Exotic Contributions to $B^0 o J/\psi K^+\pi^-$ prl 122 152002(2019)
- Beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant mass spectrum JHEP 10 086(2018)

Exotic baryons at LHCb

- Observation of a narrow pentaquark state, P_c(4312)⁺, and of two-peak structure of the P_c(4450)⁺ PRL 122, 222001 (2019)
- A search for weakly decaying b-flavored pentaquarks PRD 97, 032010 (2017)
- $B^0_{(s)} o J/\psi p \bar{p}$ and precision measurements of the $B^0_{(s)}$ masses PRL 122 191804 (2019)

3 A look to run 3 and beyond

Study $\chi(3872)$ lineshape with simultaneous fit to multiple channels Study charged exotic mesons such as $Z(4430)^+$. Broad - require amplitude analyses Explicitly exotic charm states eg. doubly charmed tetraquarks $(cc\bar{q}\bar{q'}) \mathcal{T}_{cc}^+ \rightarrow D_s^+ D^0$ P_c observation channel - high sensitivity amplitude analysis (J^{PC}) Search for hidden-charm pentaquark with strangeness decaying to $J/\psi/\Lambda$. 1st observation at LHCb with ≈ 300 signal decays (PLB 772 265 (2017))

Nicole Skidmore (Physikalisches Institut, Heidelberg)

Exotic state searches are very active both in experiment and theory sectors

Experimental and theoretical developments moving quickly

LHCb working on full run 1 and run 2 dataset where statistics are such that more amplitude analyses are possible

Excellent long term prospects for exotic searches at LHCb

Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ - UPDATE

Predictions that P_c states observed by LHCb may be due to rescattering effects through triangle diagrams

Can be tested by searching for $P_c(4450) \rightarrow \chi_{c1}p$ resonance in $\Lambda_b \rightarrow \chi_{c1}pK^-$ - requires amplitude analysis

Exotics search in $\Lambda_b^0 \to \chi_{c(1,2)} p K^-$

First observation of $\Lambda_b^0 \to \chi_{c(1,2)} p K^-$ and branching fraction measurement in preparation for amplitude analysis

Reconstruct $\chi_{cJ} \rightarrow J/\psi\gamma$ No suppression of χ_{c2} relative to χ_{c1} as observed in *B* decays

Significance of χ_{c1} and χ_{c2} decay modes 29 σ and 17 σ

$$\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.242 \pm 0.014 \pm 0.013 \pm 0.009$$
$$\frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)} = 0.248 \pm 0.020 \pm 0.014 \pm 0.009$$