Strangeness photoproduction at the BGO-OD experiment

 $K^0 \Sigma^0$

Georg Scheluchin

for the BGO-OD-Collaboration

Physikalisches Institut Universität Bonn

BGO-OD

HADRON2019

16-21 August 2019

Supported by the DFG (PN 388979758, 405882627)

A iversität**bonn** Motivation BGO-OD $\Lambda(1405)$ $K^0\Sigma^0$ K^+Y at forward angles Summary & ou

Unconventional states

Κ

D*

D

K*

Motivation BGO-OD $\Lambda(1405)$ $\kappa^0 \Sigma^0$ $\kappa^+ Y$ at forward angles Summary Unconventional states in the strangeness sector?

U.Loering, B.C. Metsch and H.R. Petry Eur.Phys.J. A10, 447-486 (2001)

Motivation BGO-OD $\Lambda(1405)$ $K^0\Sigma^0$ K^+Y at forward angles Summary & outlook

Experimental requirements

photoproduction

 $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma \pi$

BGO-OD

Motivation

Motivation BGO-OD $\Lambda(1405)$ $K^0\Sigma^0$ K^+Y at forward angles Summar

Electron Stretcher Accelerator (ELSA) in Bonn

BGO-OD

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$

UNIVERSITÄT BONN

8/18

Line shape compared to other experiments

Λ(1405)

Differential cross section $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0$

UNIVERSITÄT BONN

K* Κ Π Λ/Σ A. Ramos and E. Oset, Phys. Lett. B 727, (2013) 287

Same model that predicted the LHCb pentaquark

Data points: R. Ewald *et al.*,Phys. Lett. B 713 (2012) 180 (CBELSA/TAPS Collaboration) [Most forward bin: $cos \Theta_K^{cms} = 0.83$]

 $\gamma n(p)
ightarrow K^0 \Sigma^0$ using a deuterium target

work of K. Kohl PhD

 $\kappa^0 \Sigma^0$

Consistent with prediction of a meson-baryon dynamically generated state

Motivation BGO-OD $\Lambda(1405)$ $K^0\Sigma^0$ K^+Y at forward angles Summary & out

$K^+\Lambda$ at forward angles

Photoproduction of ground state hyperons at low *t* virtually unconstrained by data!

D. Skoupil, P. Bydzovsky, Phys. Rev. **C97**, 025202 (2018) (& refs. therein) MAMI - T. C. Jude et al., Phys. Lett. B 735, 112 (2014) CLAS 2005 - R. Bradford et al., Phys. Rev. C 73, 035202 (2006) CLAS 2010 - M. E. McCracken et al., Phys. Rev. C 81, 025201 (2010)

Crucial for hypernuclei electroproduction

Isobar models

- Effective meson-baryon Lagrangian
- Explicitly added resonances:
 - > 20 for strangeness photoproduction!

 $\kappa^0 \Sigma^0$ BGO-OD $K^+ Y$ at forward angles

Forward $K^+\Lambda$ differential cross sections

Forward $K^+\Sigma^0$ differential cross sections

BGO-OD

■ "cusp" like structure at *W* = 1900 MeV?

 $\kappa^0 \Sigma^0$

 $K^+ Y$ at forward angles

R. Bradford *et al.*, Phys. Rev. C73, 035202 (2006), B.Dey *et al.*, Phys.Rev. C82, 025202 (2010), K.H. Glander *et al.*, Eur. Phys. J. A19, 251 (2004), CLAS data in $\cos\theta_{k+}^{OM}$ 0.85 to 0.95 interval

Motivation BGO-OD $\Lambda(1405)$ $K^0\Sigma^0$ K^+Y at forward angles Summary &

Forward $K^+\Sigma^0$ differential cross sections, "cusp"

Threshold effects at low momentum transfer? $K^+\Lambda(1405), f_0(980)p, \eta'p, ...$

Summary & outlook

BGO-OD

Motivation

- meson-baryon bound states?
- BGO-OD: unique setup
 - extreme forward angles
- current projects
 - strangeness photoproduction e.g. $K^+\Lambda$, $K^+\Sigma^0$, $K^0\Sigma^0$, ... → differential cross section
 - Threshold effects?
 e.g. K⁰Σ⁰, K⁺Σ⁰, ...
 - A(1405) meson-baryon bound state? → line shapes
 - non-strange photoproduction
 e.g. η'ρ, ...

Summary & outlook

 $\kappa^0 \Sigma^0$

Motivation

Λ(14

K⁰

 $K^+ Y$ at forward angle

The BGO-OD collaboration

BGO-OD

S. Alef¹, P. Bauer¹, D. Bayadilov^{2,3}, R. Beck², M. Becker², A. Bella¹, J. Bieling¹, S. Böse², A. Braghieri⁴,

- K.-Th. Brinkmann⁵, P. Cole⁶, R. Di Salvo⁷, D. Elsner¹, A. Fantini^{7,8}, O. Freyermuth¹, F. Frommberger¹,
- G. Gervino^{9,10}, F. Ghio^{11,12}, S. Goertz¹, A. Gridnev³, E. Gutz⁵, D. Hammann¹, J. Hannappel¹, W. Hillert¹,
- R. Jahn², R. Joosten², T.C. Jude¹, F. Klein¹, K. Kohl¹, K. Koop², N. Kozlenko³, B. Krusche¹³, A. Lapik¹⁴,
- P. Levi Sandri^{15,a}, V. Lisin¹⁴, I. Lopatin³, G. Mandaglio^{16,17}, F. Messi¹, R. Messi^{7,8}, D. Moricciani⁷,
- A. Mushkarenkov¹⁴, V. Nedorezov¹⁴, D. Novinskiy³, P. Pedroni⁴, A. Polonskiy¹⁴, B. Reitz¹, M. Romaniuk⁵,
- T. Rostomyan¹³, G. Scheluchin¹, H. Schmieden^{1,b}, A. Stugelev³, V. Sumachev³, V. Tarakanov³, V. Vegna¹,
- D. Walther², H.-G. Zaunick^{2,5}, and T. Zimmermann¹
- ¹ Rheinische Friedrich-Wilhelms-Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn, Germany
- ² Rheinische Friedrich-Wilhelms-Universität Bonn, Helmholtz-Institut für Strahlen und Kernphysik, Nußallee 14-16, 53115 Bonn, Germany
- ³ Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, 188300, Russia
- ⁴ INFN sezione di Pavia, Via Agostino Bassi, 6 27100 Pavia, Italy
- ⁵ Justus-Liebig-Universität Gießen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
- ⁶ Lamar University, Department of Physics, Beaumont, Texas, 77710, USA
- ⁷ INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- ⁸ Università di Roma "Tor Vergata", Dipartimento di Fisica, Via della Ricerca Scientifica 1, 00133, Rome, Italy
- ⁹ INFN sezione di Torino, Via P.Giuria 1, 10125, Torino, Italy
- ¹⁰ Università di Torino, Dipartimento di Fisica, via P. Giuria 1, 10125, Torino, Italy
- ¹¹ INFN sezione di Roma La Sapienza, P.le Aldo Moro 2, 00185, Rome, Italy
- ¹² Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- ¹³ Institut für Physik, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- ¹⁴ Russian Academy of Sciences Institute for Nuclear Research, Prospekt 60-Letiya Oktyabrya 7a, 117312, Moscow, Russia
- ¹⁵ INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044, Frascati, Italy
- ¹⁶ INFN sezione Catania, 95129, Catania, Italy
- ¹⁷ Università degli Studi di Messina, Dipartimento MIFT, Via F. S. D'Alcontres 31, 98166, Messina, Italy

Thank you for your attention!

Meson Spectrum

Mass recoiling from forward K^+

Line shape at BGO-OD

Diff.Cross vs Calculated \sqrt{t} for E_{\gamma}=1500.000000..1767.000000 $\underline{\text{MeV}}$

new t correlation direct results

Differential cross section $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0$

Mandelstam variable $t = (\gamma - K^+)^2$ transfer momentum $\vec{q} = \vec{\gamma} - \vec{K^+}$

Differential cross section against t

Differential cross section against $|\vec{q}|$

Doppel peak structure in line shape?

$K^+\pi^0\Sigma^0 \rightarrow K^+3\gamma\pi^-p$ (real data)

 $\Sigma^0 \rightarrow \gamma \Lambda \rightarrow \gamma \pi^- \rho$ (64%). No particle identification of K⁺.

$K^+\pi^0\Sigma^0$ background subtracted (E_{γ} =1.6..2.0 GeV)

Extraction of differential cross section possible

Line shape $\Lambda(1405)$

Beamtime	datataking / days	P_γ / %	e-Beamcurrent / pA
6/2015	11	≈25	1300
10/2015	16	≈25	1190
2/2017	3	\approx 75	1300-1700
5/2017	(15)	(75)	(1300)

$K^+\pi^0\Sigma^0 \to K^+\pi^0\gamma + \Lambda(\text{missing})$ (real data)

 $\Sigma^0 \rightarrow \gamma \Lambda(100\%)$. After a kinematic fit to the missing Λ mass.

$\Lambda(1405)$ line shape

Prediction:

$$egin{array}{ll} \Lambda(1405) o \Sigma^0 \pi^0 \ \Sigma^\pm \pi^\mp \end{array}$$

J.C.Nacher et al. Phys.Lett. B455, 55-61 (1999) see also: D.Jido et al. Nucl.Phys.A. 725,181 (2003)

Free NK threshold at 1432 MeV

 $\begin{array}{rl} \rightarrow & \mbox{distorted mass line shape} \\ \rightarrow & \mbox{different for decay channels} \end{array}$

BGO-OD slice view

RooFit reliability

\Rightarrow Results very preliminary

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$ (33 %)

- K⁺ in Forward Detector
- $\pi^0 \rightarrow 2\gamma$ in Central Detector

• Σ^0 missing

 \rightarrow f. spec.

$K^+ \Lambda(1405) ightarrow K^+ \pi^0 \Sigma^0$ (33 %)

- K⁺ in Forward Detector
- $\pi^0 \rightarrow 2\gamma$ in Central Detector

 \rightarrow |f. spec.|

Σ⁰ missing

${\cal K}^+$ Λ(1405) $\rightarrow {\cal K}^+ \pi^0 \Sigma^0 \rightarrow {\cal K}^+ \pi^0 \gamma \Lambda$ $\rightarrow {\cal K}^+ \pi^0 \gamma \pi^- p$ (21%)

- $\pi^0 \gamma$ in BGO calorimeter ($\theta^{lab} = 25..155^\circ$)
- $K^+\pi^-p$ with direction only ($\theta^{lab} = 2..155^\circ$)
 - \rightarrow recalculated momentum
 - \rightarrow no particle identification

kinematic fit

$$\rightarrow$$
 full top.

Removing combinatorial background

Angle distribution of γ from the $\Sigma \rightarrow \gamma \Lambda$ decay

Real data $\gamma p \rightarrow K^+ \Lambda(1405) \rightarrow K^+ \Sigma^0 \pi^0 \rightarrow K^+ \gamma \Lambda^0 \pi^0$

Simulation studies of background: $\Sigma(1385)$

RooFit

 $K^+\Lambda(1405)$ events can be extracted with RooFit

Line shape extraction with RooFit

- **1** exclude events with $|\gamma \Lambda| \approx |\Sigma^0|$
- 2 fit background channels (excluding: $K^+\Sigma^0\pi^0, K^+\Lambda(1405/1520), K^{*+}\Sigma^0)$
- 3 subtract fitted background distribution from data

Line shape extraction, RooFit results, $\gamma \Lambda$ projection

Line shape extraction, RooFit results, $\pi^0 \gamma \Lambda$ projection

background region: $|\gamma \Lambda| < 1167$ MeV or $|\gamma \Lambda| > 1212$ MeV

Line shape extraction, RooFit results, $\pi^0 \gamma \Lambda$ projection

signal region: 1167 MeV $< |\gamma \Lambda| <$ 1212 MeV

Line shape extracted

Mass resolution $\sigma = 13.0 \pm 0.1 \text{MeV}$

$K^+\Lambda(1405) \rightarrow K^+\pi^0 X$ (real data, K⁺ forward)

$K^+\Lambda(1405) \rightarrow K^+\pi^0 X$ (sim. $\Sigma(1385)$, K^+ forward)

