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EIC Users Group keeps growing
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Critical Decision Process DOE
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Outline

§ Status of EIC

§ EIC Physics: two major pillars and two minor pillars
§ Major 1: quantum tomography of protons and nuclei

§ Major 2: a new form of matter – color glass condensate

§ Minor 1: high energy QCD – jet physics in ep/eA collisions

§ Minor 2: beyond standard model physics – weak current/dark photon (among 
others)

§ Summary
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Justification of EIC

§ The Justification Phase of the EIC has ended

§ Finally we are entering the Realization Phase this year 
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Recommendation III

We recommend a high-energy, 
high-luminosity polarized 
Electron Ion Collider as the 
highest priority for new facility 
construction following the 
completion of FRIB. 



Justification of EIC

§ The Justification Phase of the EIC has ended

§ Finally we are entering the Realization Phase this year 
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National Academy of Sciences Consensus Report 
on the Science Case for a U.S. based Electron-Ion 
Collider (July 2018)
The committee unanimously finds that the science 
that can be addressed by an EIC is compelling, 
fundamental, and timely



Reaching out to the public
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Scientific American (2015)
The glue that binds us 

Scientific American (2019)
Deshpande, Yoshida

CERN Courier (2018)
Aschenauer, Ent



EIC Scientific Studies

§ EIC physics continues being developed in the community
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EIC Scientific Studies

§ EIC physics continues being developed in the community
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EIC Science Pillars: major ones

§ Two major pillars
§ actively developed and developing at the moment (EIC white paper)
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v Quantum Tomography of protons and nuclei

v A new form of matter - color glass condensate 
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major pillar: quantum tomography
of nucleons and nuclei



Quantum Tomography

§ Usually people in AMO or condensed matter physics, material 
science talks about quantum tomography
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Complete knowledge of a quantum state 
as given by a wavefunction 

allows the prediction of the probability of 
all possible measurement outcomes

A crucial step in quantum mechanics

| i



Wikipedia

§ Quantum tomography is the process of reconstructing the 
quantum state for a source of quantum systems by 
measurements on the systems coming from the source

§ Wigner function W(p, r): contains needed information of the 
quantum state
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Phase-space distribution and Wigner function

§ The state of a classical particle is specified by its momentum and 
position (p, r) – phase-space

§ In quantum physics, because of uncertainty principle, such phase-
space distributions seem useless, …

§ A quantum version of such a phase-space distribution 
§ Wigner, 1932

§ Integrate over r (p), one gets the momentum (coordinate) probability density

§ Not positive definite in general (only in classical limit)

§ Contains information about a quantum system
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Unified view: internal landscape

§ Wigner distributions: a quantum version of phase-space distribution
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Now 3D structure

§ 1D: 30+ years study, but no correlation at all

§ Proton 3D structure: both longitudinal + transverse
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f(x)

Longitudinal motion only Longitudinal + transverse motion 

Transverse Momentum Dependent parton distributions (TMDs)

f(x, kT )



TMDs: much richer structure

§ Quark: 8 TMDs in high energy limit
§ Quantum correlations: spin-spin, spin-orbital, orbital motion, quantum phase 

interference, …
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Using the proton as 
a QCD “laboratory”



Sivers function: a spin-momentum correlation

§ Sivers function: unpolarized quark distribution inside a transversely 
polarized proton
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Sivers effect

left-right asymmetry

Look closer

ü Naïve time-reversal-odd: 
recall momentum and spin 
change sign under T

ü Forbidden?: such a 
correlation is forbidden in 
QCD, unless there is a phase

Sivers
function

�S

kT ~S · (p̂⇥ kT )

T̂ (t) !  ⇤(�t)Recall:

�S
sp Left 

Right 



Quantum mechanical phase

§ Quark passes through a color gauge field, generated by the 
remnant of the proton, it will accumulate a phase
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DIS: after the interaction
final state

Drell-Yan: before the interaction
initial state

ei�

remnant

proton

�⇤

quark

anti-quark

� = gs

Z

path
dr ·A

electron
�⇤

quark

remnant

quark

A

Sivers function|DIS = � Sivers function|DY

Collins 02, Boer-Mulders-Pijlman 03, Collins-Metz 04, Kang, Qiu, PRL 09, …



�i = e

Z

path i
d~r · ~A =  1 e

i�1 + 2 e
i�2

§ Pure quantum effect: different paths lead to interference

§ Physics today, September 2009

Sivers effect: QCD version of Aharonov-Bohm effect
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Sivers asymmetry from SIDIS and W

§ Sivers asymmetry has been measured in DIS process

§ Predictions comparison with DY/W 
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Sivers asymmetry from SIDIS and W

§ Sivers asymmetry has been measured in DIS process

§ Predictions comparison with DY/W 
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EIC: wider kinematic range
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current data for Collins and Sivers asymmetry:

COMPASS h±: PhT < 1.6 GeV
HERMES π0,±, K±: PhT < 1 GeV
JLab Hall-A π±: PhT < 0.45 GeV

JLab 12 (upcoming)
STAR-pp DY  √s = 500 GeV

STAR W bosons
RHIC 500 GeV -1 < η < 1 Collins
RHIC 200 GeV -1 < η < 1 Collins
RHIC 500 GeV 1 < η < 4 Collins
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major pillar: a new form of matter
color glass condensate



x ⌧ 1x ⇠ 1

QCD structure of nucleons/nuclei revealed 
by high energy scattering
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x

x
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§ A dilute system
§ Probes interact 

independently

§ A dense system
§ Probes interact 

coherently
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Early hints on gluon saturation

§ Strong multiple scattering with the dense gluon system of the 
nucleus leads to broadening and suppression of away side
§ Different formalisms would lead to similar predictions
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0π

K +



QCD phase diagram
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§ Where and how does the transition from a dilute parton system to a 
coherent dense gluon-dominated state occur?

§ What are the properties of such a dense gluon regime?

EIC would figure out

Historically very 
successful, 
factorization, 
perturbative QCD

“Energy” scale
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EIC Science Pillars: minor ones

§ Two minor pillars
§ Under active development (beyond EIC white paper)
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v High energy QCD: e.g., jets, jet substructure in ep/eA collisions

v Beyond Standard Model Physics: e.g., charged lepton flavor 
violation (related to Majorana neutrino), weak neutral current 
coupling, dark photon, …
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minor pillar: High energy QCD (jets)



Purposes of jet/QCD studies in DIS

§ I: Studying QCD/jets to probe 
§ Fundamental parameters of QCD: strong coupling constant

§ Parton structure of proton

§ Signature for BSM physics 

§ II: Studying QCD/jets to probe QCD medium
§ Cold nuclear matter in e+A collisions

§ Hot quark-gluon plasma in A+A collisions
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NNLO + resummation

NLO + resummation is probably sufficient at the moment
First e+A jet measurements are still yet to come at EIC
Too many effects need to be taken into account in A+A
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§ II: Studying QCD/jets to probe QCD medium
§ Cold nuclear matter in e+A collisions

§ Hot quark-gluon plasma in A+A collisions
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NNLO + resummation

NLO + resummation is probably sufficient at the moment
First e+A jet measurements are still yet to come at EIC
Too many effects need to be taken into account in A+A



Jet physics is promising at EIC

§ Plots from EIC team at BNL
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Theory at NNLO, Abelof-Boughezal-Liu-Petriello, 2018 



Jet at EIC: cleaner environment

§ Computation and comparison with event generator
§ e+A collision is much cleaner environment, likely the main non-perturbative 

contribution is hadronization effects

34

Kyle Lee, with help from B. Page, E. Aschenauer
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Jet at EIC: cleaner environment

§ Computation and comparison with event generator
§ e+A collision is much cleaner environment, likely the main non-perturbative 

contribution is hadronization effects
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Kyle Lee, with help from B. Page, E. Aschenauer
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minor pillar: BSM Physics



The Weinberg angle 

§ The weak mixing angle or Weinberg angle 
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Zhao, Deshpande, Huang, Kumar, Riordan, EPJA, 2017



Dark matter at EIC

§ Dark matter exist (observed via gravity)

§ How to look for dark matter
§ Three “portals” to dark sectors
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Dark photons



Dark photon search

§ Dark photon at Fermilab via SeaQuest
§ Drell-Yan type process to search for dark photon in p+A collisions

§ Dark photon search at EIC
§ R. Milner (DarkLight spokesperson)

§ Significant interest among collaboration
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Highlighted at an overview talk by N. Toro at “Dark Interactions 2016”
See also: Berlin, Gori, Schuster, Toro, PRD, 2018

M. Liu, K. Liu, et.al., 2016



EIC designs: BNL and JLab
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BNL

JLab

v Variable CM energies: 20 – 100 GeV
Upgradable to 140 GeV

v Collision luminosity: 1033-34 cm-2s-1

v Polarized (~70%) electrons, protons, 
and light nuclei



Summary

41

Thank you!

Electron Ion Collider (EIC) is the next QCD frontier

Exciting physics opportunities ahead of us


