EIC Physics in US

Zhongbo Kang UCLA

HADRON 2019 Conference August 16 - 21, 2019

EIC Users Group keeps growing

The EIC Users Group: EICUG.ORG

Formally established in 2016 864 Ph.D. Members from 30 countries, 184 institutions

EICUG Structures in place and active.

EIC UG Steering Committee (w/ European Representative) EIC UG Institutional Board EIC UG Speaker's Committee (w/European Rep.)

Task forces on:

- -- Beam polarimetry
- -- Luminosity measurement
- -- Background studies
- -- IR Design

Annual meetings: Stony Brook (2014), Berkeley (2015), ANL (2016), Trieste (2017), CAU (2018), Paris (2019)

Florida (2020), Poland (2021)

Courtesy of A. Deshpande

EIC Users Group keeps growing

Courtesy of A. Deshpande

Critical Decision Process DOE

Outline

- Status of EIC
- EIC Physics: two major pillars and two minor pillars
 - Major 1: quantum tomography of protons and nuclei
 - Major 2: a new form of matter color glass condensate
 - Minor 1: high energy QCD jet physics in ep/eA collisions
 - Minor 2: beyond standard model physics weak current/dark photon (among others)
- Summary

Justification of EIC

- The Justification Phase of the EIC has ended
- Finally we are entering the *Realization Phase* this year

The 2015 LONG RANGE PLAN

for NUCLEAR SCIENCE

Recommendation III

We recommend a high-energy, high-luminosity polarized Electron Ion Collider as the highest priority for new facility construction following the completion of FRIB.

nature International weekly journal of science

Brookhaven National Laboratory in New York is a potential host for the Electron-Ion Collider.

NUCLEAR PHYSICS

Billion-dollar collider gets thumbs up

 $\label{eq:proposed} Proposed US \ electron-ion \ smasher \ wins \ endorsement \ from \ influential \ nuclear-science \ panel.$

Justification of EIC

- The *Justification Phase* of the EIC has ended
- Finally we are entering the *Realization Phase* this year

National Academy of Sciences Consensus Report on the Science Case for a U.S. based Electron-Ion Collider (July 2018)

The committee unanimously finds that the science that can be addressed by an EIC is compelling, fundamental, and timely

Reaching out to the public

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

Scientific American (2015) The glue that binds us

CERN Courier (2018) Aschenauer, Ent

Scientific American (2019) Deshpande, Yoshida

EIC Scientific Studies

EIC physics continues being developed in the community

The National Academies of SCIENCES - ENGINEERING - MEDICINE

EIC Scientific Studies

EIC physics continues being developed in the community

EIC Science Pillars: major ones

- Two major pillars
 - actively developed and developing at the moment (EIC white paper)
 - Quantum Tomography of protons and nuclei

✤ A new form of matter - color glass condensate

major pillar: quantum tomography of nucleons and nuclei

Quantum Tomography

 Usually people in AMO or condensed matter physics, material science talks about quantum tomography

Complete knowledge of a quantum state as given by a wavefunction $|\psi\rangle$

allows the prediction of the probability of all possible measurement outcomes

A crucial step in quantum mechanics

Wikipedia

 Quantum tomography is the process of reconstructing the quantum state for a source of quantum systems by measurements on the systems coming from the source

 Wigner function W(p, r): contains needed information of the quantum state

Phase-space distribution and Wigner function

- The state of a classical particle is specified by its momentum and position (p, r) – phase-space
- In quantum physics, because of uncertainty principle, such phasespace distributions seem useless, ...
- A quantum version of such a phase-space distribution
 - Wigner, 1932

$$W(p,r) = \int dy \, e^{ip \cdot y} \, \psi^* \left(r + \frac{y}{2}\right) \, \psi\left(r - \frac{y}{2}\right)$$

- Integrate over r (p), one gets the momentum (coordinate) probability density
- Not positive definite in general (only in classical limit)
- Contains information about a quantum system

X. Ji, 2003

Unified view: internal landscape

Wigner distributions: a quantum version of phase-space distribution

Now 3D structure

- ID: 30+ years study, but no correlation at all
- Proton 3D structure: both longitudinal + transverse

Transverse Momentum Dependent parton distributions (TMDs)

TMDs: much richer structure

- Quark: 8 TMDs in high energy limit
 - Quantum correlations: spin-spin, spin-orbital, orbital motion, quantum phase interference, ...

Using the proton as a QCD "laboratory"

Sivers function: a spin-momentum correlation

 Sivers function: unpolarized quark distribution inside a transversely polarized proton

Quantum mechanical phase

 Quark passes through a color gauge field, generated by the remnant of the proton, it will accumulate a phase

DIS: after the interaction final state

Drell-Yan: before the interaction initial state

$$e^{i\phi} \qquad \phi = g_s \int_{\text{path}} dr \cdot A$$

Sivers function
$$|_{\text{DIS}} = \bigcirc$$
 Sivers function $|_{\text{DY}}$

Collins 02, Boer-Mulders-Pijlman 03, Collins-Metz 04, Kang, Qiu, PRL 09, ...

Sivers effect: QCD version of Aharonov-Bohm effect

Pure quantum effect: different paths lead to interference

Physics today, September 2009

$$\Psi = \Psi_1 \, e^{i \phi_1} + \Psi_2 \, e^{i \phi_2}$$

$$\phi_i = e \int_{\text{path i}} d\vec{r} \cdot \vec{A}$$

Sivers asymmetry from SIDIS and W

Sivers asymmetry has been measured in DIS process

Predictions comparison with DY/W

STAR, PRL, 2016

0.5

vw

Sivers asymmetry from SIDIS and W

Sivers asymmetry has been measured in DIS process

STAR, PRL, 2016

EIC: wider kinematic range

For e-N collisions at the EIC: \checkmark Polarized beams: e, p, d/³He \checkmark e beam 5-10(20) GeV \checkmark Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹ 100-1000 times HERA \checkmark 20-100 (140) GeV Variable CoM For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Luminosity per nucleon same as e-p
- ✓ Variable center of mass energy

World's first

Polarized electron-proton/light ion and electron-Nucleus collider

major pillar: a new form of matter color glass condensate

QCD structure of nucleons/nuclei revealed by high energy scattering

Early hints on gluon saturation

- Strong multiple scattering with the dense gluon system of the nucleus leads to broadening and suppression of away side
 - Different formalisms would lead to similar predictions

QCD phase diagram

Where and how does the transition from a dilute parton system to a coherent dense gluon-dominated state occur?

• What are the properties of such a dense gluon regime?

EIC Science Pillars: minor ones

- Two minor pillars
 - Under active development (beyond EIC white paper)
 - High energy QCD: e.g., jets, jet substructure in ep/eA collisions

Beyond Standard Model Physics: e.g., charged lepton flavor violation (related to Majorana neutrino), weak neutral current coupling, dark photon, ...

minor pillar: High energy QCD (jets)

Purposes of jet/QCD studies in DIS

- I: Studying QCD/jets to probe
 - Fundamental parameters of QCD: strong coupling constant
 - Parton structure of proton
 - Signature for BSM physics

NNLO + resummation

LHC THEORY - TOWARDS 1% PRECISION?

Gavin P. Salam, CERN

Joint CTEQ Meeting and 7th International Conference on Physics Opportunities at an EIC (POETIC 7)

- II: Studying QCD/jets to probe QCD medium
 - Cold nuclear matter in e+A collisions
 - Hot quark-gluon plasma in A+A collisions

NLO + resummation is probably sufficient at the moment First e+A jet measurements are still yet to come at EIC Too many effects need to be taken into account in A+A

Purposes of jet/QCD studies in DIS

- I: Studying QCD/jets to probe
 - Fundamental parameters of QCD: strong coupling constant
 - Parton structure of proton

NLO + resummation is probably sufficient at the moment First e+A jet measurements are still yet to come at EIC Too many effects need to be taken into account in A+A

Jet physics is promising at EIC

Plots from EIC team at BNL

Theory at NNLO, Abelof-Boughezal-Liu-Petriello, 2018

Jet at EIC: cleaner environment

- Computation and comparison with event generator
 - e+A collision is much cleaner environment, likely the main non-perturbative contribution is hadronization effects

Kyle Lee, with help from B. Page, E. Aschenauer

Kang, Lee, Liu, Ringer, JHEP, 2018

Jet at EIC: cleaner environment

- Computation and comparison with event generator
 - e+A collision is much cleaner environment, likely the main non-perturbative contribution is hadronization effects

minor pillar: BSM Physics

The Weinberg angle

The weak mixing angle or Weinberg angle

Zhao, Deshpande, Huang, Kumar, Riordan, EPJA, 2017

Dark matter at EIC

Dark matter exist (observed via gravity)

- How to look for dark matter
 - Three "portals" to dark sectors

Vector Portal	$\frac{1}{2} \epsilon_{\mathbf{Y}} F_{\mu\nu}^{Y} F^{\prime\mu\nu}$	Most visible	Dark photons
Higgs Portal	$\epsilon_{h} h ^{2} \phi ^{2}$	exotic rare Higgs decays rare meson decays	
Neutrino Portal	$\epsilon_{oldsymbol{ u}} (hL) \psi$	not-so-sterile neutrinos	

Dark photon search

- Dark photon at Fermilab via SeaQuest
 - Drell-Yan type process to search for dark photon in p+A collisions

Highlighted at an overview talk by N. Toro at "Dark Interactions 2016" See also: Berlin, Gori, Schuster, Toro, PRD, 2018

Dark photon search at EIC

- R. Milner (DarkLight spokesperson)
- Significant interest among collaboration

M. Liu, K. Liu, et.al., 2016

EIC designs: BNL and JLab

- Variable CM energies: 20 100 GeV Upgradable to 140 GeV
- Collision luminosity: 10³³⁻³⁴ cm⁻²s⁻¹
- Polarized (~70%) electrons, protons, and light nuclei

Electron Ion Collider (EIC) is the next QCD frontier Exciting physics opportunities ahead of us

Thank you!