

Strong Absorption of Hadrons with Hidden and Open Strangeness probed with Pion-Nucleus Collisions at 1.7 GeV/c *

Joana Wirth for the HADES Collaboration

Dense and Strange Hadronic Matter (E62) Physik Department Technische Universität München www.denseandstrange.ph.tum.de

*supported by SFB 1258

Jniversal Strangeness Production

Dense (and hot) nuclear matter

→ All strange hadrons produced below NN threshold:

$$\rightarrow NN \rightarrow N\Lambda K (\approx -150 \text{ MeV})$$

 $\rightarrow NN \rightarrow NK\overline{K}/NN\phi$ (\approx - 450 MeV)

Joana Wirth

Hadron 2019

Λ

φ **Universal Strangeness Production**

Hadron 2019

Λ

Φ **Universal Strangeness Production**

Hadron 2019

Λ

Pion-Induced Strange Hadron Production

- → Mean free path $\lambda_{\pi} = 1.5 fm$ ($p_{\pi} = 1.7 GeV/c$, $\rho_{B} \approx \rho_{0}$)
- → π is likely to undergo reactions with nucleus on the surface of the target nucleus

Benabderrahmane et al., Phys. Rev. Lett. 102, 182501 (2009)

→ K⁰ production scales with the surface of the nucleus in pioninduced reactions (@ 1.15 GeV/c)

Pion Facility with HADES

SECONDARY PION BEAM @ 1.7 GeV/c

Strange Hadron Selection

1000 0 $q \times p$ [MeV/c]

Joana Wirth

-1000

 \mathbf{K}^{-}

φ

Strange Hadrons in Nuclear Matter

Strangeness exchange: $\overline{K}N \rightarrow \pi Y$ (mediated by resonances)

Feed-down processes: $\phi \rightarrow K\overline{K}$ Absorption processes: $\phi N \rightarrow \pi N$ (OZI violation)

Re-scattering with Nucleons: $KN, \overline{K}N, YN, ...$

Kaon-Nucleon Interaction

Schaffner-Bielich et al., Nucl. Phys. A 625, 325 (1997)

Pb

^m→ c

 $\rightarrow U_{KN} \approx 20 - 40 \text{ MeV}$

 K_{s}^{0} properties: Ar + KCl, p + Nb (p + p) Agakishiev et al. Phys. Rev. C82, 044907 (2010) Agakishiev et al. Phys. Rev. C90, 054906 (2014)

Hadron 2019

Strangeness Production

 \rightarrow Symmetric distribution of all strange hadrons in π^-+C

- \rightarrow Distribution shifted to backward rapidity of K⁺ in π ⁻+W
- \rightarrow Shape of differential cross-section of K⁻ in π^-+W comparable to π^-+C

rix cha

K⁻

Strangeness Production

- → State-of-the-art transport model calculation over-/underestimate yields
- → Strangeness locally conserved: associated strange meson production
 - \rightarrow No conclusive description of all hadrons!

rix CINN

K⁻

Interplay of Antikaons and Hyperons

K-

Strangeness Exchange

→ Strong K^- absorption for $\rho \le \rho_0$ → First observation in heavy nuclei

rix CIN

Hadron 2019

K⁻

Strange Hadrons in Nuclear Matter

Strangeness exchange: $\overline{K}N \rightarrow \pi Y$ (mediated by resonances)

Feed-down processes: $\phi \rightarrow K\overline{K}$ Absorption processes: $\phi N \rightarrow \pi N$ (OZI violation)

Re-scattering with Nucleons: $KN, \overline{K}N, YN, ...$

Strange ϕ Meson

- → φ important source for K⁻ production below NN threshold
- $\rightarrow \phi/K^{-}$ strongly increasing below threshold

Blume et al. Prog. Part. Nucl. Phys. 66, 834-879 (2011) Adamczewski-Musch et al., Phys. Lett. B 778, 403 (2018)

- → Transparency ratio of ϕ decreasing for increasing A (p + A)
- → In-medium modification of ϕ → Increase of in-medium width

K

Φ

Absorption Processes: ϕ

Adamczewski-Musch et al., Phys. Rev. Lett. 123, 022002 (2019)

r.xclw

K⁻

φ

Phi Transparency Ratio

ANKE: Polyanskiy et al. Phys. Lett. B 695, 74 (2011) HADES: Adamczewski-Musch et al., Phys. Rev. Lett. 123, 022002 (2019)

photo-induced (CLAS) reactions \rightarrow Signature of ϕ absorption

Joana Wirth

Hadron 2019

φ

Phi Transparency Ratio

ANKE: Polyanskiy et al. Phys. Lett. B 695, 74 (2011) HADES: Adamczewski-Musch et al., Phys. Rev. Lett. 123, 022002 (2019)

- → Extracted transparency ratio lower in π^- + A reactions compared to proton- (ANKE) and photo-induced (CLAS) reactions
- \rightarrow Signature of φ absorption

Joana Wirth

rix cha

Hadron 2019

φ

Strangeness Summary

→ K^+ scattering in π^- + W with respect to π^- + C → K^- absorption in π^- + W with respect to π^- + C → ϕ/K^- ratio constant for π^- + W and π^- + C → ϕ disappearance as well as K^-

Adamczewski-Musch et al., Phys. Rev. Lett. 123, 022002 (2019)

K[−]

φ