

In-Medium Properties of Lambda in Pion-Induced Reactions at 1.7 GeV/c*

Steffen Maurus for the HADES Collaboration

Dense and Strange Hadronic Matter (E62) Physik Department Technische Universität München

*supported by SFB 1258

Pion-Induced Strange Hadron Production

$$\lambda = 1.5 \text{ fm } (p_{\pi} = 1.7 \text{ GeV/c})$$

 $d_{C,W} \approx 5.5, 14.2 \text{ fm}$

→ π is likely to undergo reactions with nucleus on the surface of the target nucleus Benabderrahmane et al., Phys. Rev. Lett. 102, 182501 (2009)

→ K⁰ production scales with the surface of the nucleus in pioninduced reactions (@ 1.15 GeV/c)

Pion Facility with HADES

SECONDARY PION BEAM @ 1.7 GeV/c

Hadron 2019

Hyperon Stars

Momentum [MeV/c]

QMC: Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2015)

→ QMC: Attractive Λ N interaction + (phenom.) repulsive Λ NN interaction → Hypernuclei ($U_{\Lambda N} \approx -30$ MeV)

Hyperon Stars

QMC: Lonardoni et al., Phys. Rev. Lett. 114, 092301 (2015) ChEFT: T. Hell et al., Phy. Rev. C 90, 045801 (2014)

→ QMC: Attractive AN interaction + (phenom.) repulsive ANN interaction

→ Hypernuclei ($U_{\Lambda N} \approx -30$ MeV)

- → **ChEFT:** Scattering data
- \rightarrow Further constraints on **YN** forces needed!!
 - → "Hyperon Puzzle"

Hyperons inside Nuclear Matter

 $\rightarrow \Lambda/\Sigma$ single particle interaction within the nucleus?

Hadron 2019

Associated Kaon Productio

→ Repulsive KN interaction → Attractive $\overline{K}N$ interaction

 $\rightarrow U_{KN} \approx 20 - 40 \text{ MeV}$

K⁰_s properties: Ar + KCl, p + Nb (p + p) Agakishiev et al. Phys. Rev. C82, 044907 (2010) Agakishiev et al. Phys. Rev. C90, 054906 (2014)

Strange Hadron Selection

q × p [MeV/c]

rix cha

Hadron 2019

K⁰

Counts / 2.5 MeV/c²

Inclusive Diff. Cross-Sections

Hadron 2019

Inclusive Diff. Cross-Sections

- → State-of-the-art transport model calculation over-/underestimate yields
- → Strangeness locally conserved: associated strange baryon and meson production
 - \rightarrow No conclusive description of all hadrons! \rightarrow In-medium effects?

r.xW

Kaon-Hyperon Coupling

Hadron 2019

Σ0

Kaon-Hyperon Coupling

<u>5</u>0

In HADES acceptance

wx.j

Transport Model: GiBUU

→ Full ensembles (π +C/ π +W): $K^0(p_T, y, p, \Theta)$ and $\Lambda(p_T, y, p, \Theta)$

Steffen Maurus

Hadron 2019

Σ0

In HADES acceptance

Nx's

Transport Model: GiBUU

1. No $K^0/\Lambda/\Sigma^0 N$ potentials (ES(Y,K))

Hadron 2019

Σ0

In HADES acceptance

Mxx

- → Acceptance and efficiency of HADES applied to GiBUU
- → Global fit of all kinematic observables: $K^0(p_T, y, p, \Theta)$ and $\Lambda(p_T, y, p, \Theta)$

Transport Model: GiBUU

1. No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))

Σ0

In HADES acceptance

N_X,

- → Acceptance and efficiency of HADES applied to GiBUU
- → Global fit of all kinematic observables: $K^0(p_T, y, p, \Theta)$ and $\Lambda(p_T, y, p, \Theta)$

Transport Model: GiBUU

1. No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))

Σ0

In HADES acceptance

x x W

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))

KN potential

Agakishiev et al., Phys. Rev. C 90, 054906 (2014)

Σ0

In HADES acceptance

1×W

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))

KN potential

Agakishiev et al., Phys. Rev. C 90, 054906 (2014)

Σ0

In HADES acceptance

ex.W

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda / \Sigma^0 N$ potentials (STD)

Σ0

In HADES acceptance

ex.W

Transport Model: GiBUU

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda / \Sigma^0 N$ potentials (STD)

Σ0

$\begin{array}{c} \Lambda \\ \Sigma^0 \\ K^0 \end{array}$

In HADES acceptance

N_x,

Transport Model: GiBUU (T. Gaitanos)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

Steffen Maurus

Hadron 2019

 $\begin{array}{c} \Lambda \\ \Sigma^0 \\ K^0 \end{array}$

In HADES acceptance

Nx's

Transport Model: GiBUU (T. Gaitanos)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

Steffen Maurus

Hadron 2019

Λ Κ⁰
Σ⁰

In HADES acceptance

N_x,

- → Data agrees best with **attractive** ΛN and **attractive** $\Sigma^0 N$ potentials (@ ρ_0)
- \rightarrow Also favored for lighter target (C)
- → Possibility of testing single particle potentials with χ EFT

Transport Model: GiBUU (T. Gaitanos)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

based on χ EFT by Petschauer et al., Eur. Phys. J. A 52, 15 (2016)

μ Κ⁰

In HADES acceptance

N_xx

- → Data agrees best with **attractive** ΛN and **attractive** $\Sigma^0 N$ potentials (@ ρ_0)
- \rightarrow Also favoured for lighter target (C)
- → Possibility of testing single particle potentials with χ EFT

Transport Model: GiBUU (T. Gaitanos)

- **1.** No $K^0/\Lambda/\Sigma^0$ N potentials (ES(Y,K))
- **2.** No Λ/Σ^0 N potentials (ES(Y))
- **3.** Attractive $\Lambda/\Sigma^0 N$ potentials (STD)
- 4. Attractive ΛN , repulsive $\Sigma^0 N$ (RS)

based on χ EFT by Petschauer et al., Eur. Phys. J. A 52, 15 (2016)

Summary

- $\rightarrow K^0 N / \Lambda N$ scattering in heavy target (W)
- \rightarrow Attractive ΛN and attractive $\Sigma^0 N$ potentials ($@\rho_0$) preferred by all kinematic distributions
- $\rightarrow \Lambda / \Sigma^0$ ratio disfavours attractive ΛN and repulsive $\Sigma^0 N$ potentials (@ ho_0)
- → HADES data allow to test different forms of potentials

Hadron 2019

<u>5</u>0

 \rightarrow State-of-the-art transport model calculation over-/underestimate yields

- → Strangeness locally conserved: associated strange baryon and meson production
 - \rightarrow No conclusive description of all hadrons! \rightarrow In-medium effects?

x x C

Steffen Maurus

Hadron 2019

Σ0

Steffen Maurus

Hadron 2019

Σ0

Steffen Maurus

Hadron 2019

Σ0

Steffen Maurus

Hadron 2019

Σ0