Considerations on Schmid theorem

E. Oset, V. R. Debastiani, S. Sakai IFIC, University Valencia

Triangle singularities Schmid theorem Dependence on the width Final considerations

Triangle singularities

THE $\pi a_0(980)$ DECAY MODE OF THE $f_1(1285)$

$$t_T = i \int \frac{\mathrm{d}^4 q}{(2\pi)^4} \,\vec{\epsilon}_{f_1} \cdot \vec{\epsilon}_{K^*} \,\vec{\epsilon}_{K^*} \cdot (2\vec{k} + \vec{q}) \,\frac{1}{q^2 - m_K^2 + i\epsilon} \,\frac{1}{(P - q)^2 - m_{K^*}^2 + im_{K^*}\Gamma_{K^*}} \,\frac{1}{(P - q - k)^2 - m_K^2 + i\epsilon}$$

$$\begin{split} \widetilde{t}_{T} &= \int \frac{\mathrm{d}^{3}q}{(2\pi)^{3}} \left(2 + \frac{\vec{k} \cdot \vec{q}}{\vec{k}^{2}} \right) \frac{1}{8\,\omega(q)\omega'(q)\omega^{*}(q)} \frac{1}{k^{0} - \omega'(q) - \omega^{*}(q) + i\epsilon} \frac{1}{P^{0} - \omega^{*}(q) - \omega(q) + i\epsilon} \\ &\times \frac{2P^{0}\omega(q) + 2k^{0}\omega'(q) - 2(\omega(q) + \omega'(q))(\omega(q) + \omega'(q) + \omega^{*}(q))}{(P^{0} - \omega(q) - \omega'(q) - k^{0} + i\epsilon)(P^{0} + \omega(q) + \omega'(q) - k^{0} - i\epsilon)}, \\ \omega(q) &= \sqrt{\vec{q}^{2} + m_{K}^{2}}, \ \omega'(q) = \sqrt{(\vec{q} + \vec{k})^{2} + m_{K}^{2}}, \ \omega^{*}(q) = \sqrt{\vec{q}^{2} + m_{K}^{2}} \end{split}$$

Poles in the integration

$$P^{0} - \omega^{*}(q) - \omega(q) + i\epsilon = 0, \quad q_{\text{on}+} = q_{\text{on}} + i\epsilon \quad \text{with} \quad q_{\text{on}} = \frac{1}{2M}\sqrt{\lambda(M^{2}, m_{1}^{2}, m_{2}^{2})}$$

$$P^{0} - \omega(q) - \omega'(q) - k^{0} + i\epsilon = 0$$

$$P^{0} - \omega(q) - \omega'(q) - k^{0} + i\epsilon = 0 \qquad \omega'(q) = \sqrt{(\vec{q} + \vec{k})^{2} + m_{K}^{2}}$$

For
$$cos(\theta)=1$$

$$q_{b+} = \gamma \left(-v E_2^* + p_2^* \right) + i \epsilon, \qquad q_{b-} = -\gamma \left(v E_2^* + p_2^* \right) - i \epsilon$$

Very simple expression to see where the TS appears , and to explain the Coleman-Norton theorem, Nuovo Cim. 1965, (TS appears when the decays in the loop can occur at the classical level).

Considerations on the Schmid theorem for triangle singularities

V.R. Debastiani, S. Sakai, E. O. EPJC 79, 69 (2019)

 t_L

 $t_t^{(0)}$ is the L=0 partial wave of the tree level amplitude

$$t_t^{(0)} + t_L = t_t^{(0)} e^{2i\delta}$$

$$\left| t_t^{(0)} + t_L \right|^2 = \left| t_t^{(0)} e^{2i\delta} \right|^2 = \left| t_t^{(0)} \right|^2$$

 $\ell \neq 0$ + $t_t^{(0)} + t_L \Big|^2$ C. Schmid, Final-s

C. Schmid, Final-state interactions and the simulation of resonances. Phys. Rev. **154**, 1363 (1967)

$$d\cos\theta |t_t + t_L|^2 = \int_{-1}^{1} d\cos\theta \left| t_t^{(\ell \neq 0)} + t_t^{(0)} + t_L \right|^2$$
$$= \int_{-1}^{1} d\cos\theta \left| t_t^{(\ell \neq 0)} + t_t^{(0)} e^{2i\delta} \right|^2$$
$$= \int_{-1}^{1} d\cos\theta \left(|t_t^{(\ell \neq 0)}|^2 + |t_t^{(0)}|^2 \right)$$
$$= \int_{-1}^{1} d\cos\theta |t_t|^2,$$

The rescattering mechanism does not change the width given by the tree level

$$\Gamma_{A} = \frac{1}{2M_{A}} \int \frac{d^{3}p_{3}}{(2\pi)^{3}} \frac{1}{2\omega_{3}} \frac{1}{8\pi} \int_{-1}^{1} d\cos\theta \, \widetilde{p}_{1} \frac{1}{M_{\text{inv}}(12)} \, |t|^{2}$$

$$t_{t} = g_{A} \, g_{R} \, \frac{1}{2\omega_{R}(\vec{p}_{3} - \vec{q}\,)} \frac{1}{\widetilde{E}_{A} - \omega_{1}(q) - \omega_{R}(\vec{p}_{3} - \vec{q}\,) + i\epsilon}$$

$$t_t^{(0)} = \frac{1}{2} \int_{-1}^1 d\cos\theta \frac{1}{2\omega_R(\vec{p}_3 - \vec{q}\,)} \\ \times \frac{g_A g_R}{\widetilde{E}_A - \omega_1(q) - \omega_R(\vec{p}_3 - \vec{q}\,) + i\epsilon}$$

$$t_{L} = \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} q^{2} dq \frac{1}{2\omega_{1}(q)} \frac{1}{2\omega_{2}(q)}$$

$$\times \frac{1}{\widetilde{E}_{A} - \widetilde{E}_{3} - \omega_{1}(q) - \omega_{2}(q) + i\epsilon}$$

$$\times 2 \frac{1}{2} \int_{-1}^{1} d\cos\theta \frac{1}{2\omega_{R}(\vec{p}_{3} - \vec{q})}$$

$$\times \frac{1}{\widetilde{E}_{A} - \omega_{1}(q) - \omega_{R}(\vec{p}_{3} - \vec{q}) + i\epsilon} g_{A} g_{R} t_{12,12}$$

Picking up the singular part of the q integration we find

$$t_L = \frac{1}{(2\pi)^2} \frac{1}{4} |q_{\text{on}}| \frac{1}{M_{\text{inv}}(12)} g_A g_R t_{12,12}(-) 4\pi i$$

$$\times \frac{1}{2} \int_{-1}^{1} d\cos\theta \frac{1}{2\omega_R(\vec{p}_3 - \vec{q}\,)}$$

$$\times \frac{1}{\widetilde{E}_A - \omega_1(q) - \omega_R(\vec{p}_3 - \vec{q}\,) + i\epsilon}.$$

$$t_L = -i \frac{1}{4\pi} |q_{\rm on}| \frac{1}{M_{\rm inv}(12)} t_{12,12} t_t^{(0)}$$

If it becomes $i\Gamma/2$ the theorem is no longer exact

$$t_L = -i \frac{1}{4\pi} |q_{\text{on}}| \frac{1}{M_{\text{inv}}(12)} t_{12,12} t_t^{(0)}$$
$$f = -\frac{1}{8\pi} \frac{1}{M_{\text{inv}}} t_t$$
$$t_L = 2i |q_{\text{on}}| f t_t^{(0)}$$

$$f = \frac{\eta \, e^{2i\sigma} - 1}{2\,i \, |q_{\rm on}|}$$

$$t_t^{(0)} + t_L = t_t^{(0)} (1 + 2i |q_{\text{on}}| f) = \eta \, e^{2i\delta} \, t_t^{(0)}$$

$$\int_{-1}^{1} d\cos\theta \, |t_t + t_L|^2 = \int_{-1}^{1} d\cos\theta \left\{ \left| t_t^{(\ell \neq 0)} \right|^2 + \eta^2 \left| t_t^{(0)} \right|^2 \right\}$$
$$= \int_{-1}^{1} d\cos\theta \left\{ \left| t_t^{(\ell \neq 0)} \right|^2 + \left| t_t^{(0)} \right|^2 - (1 - \eta^2) \left| t_t^{(0)} \right|^2 \right\}$$
$$= \int_{-1}^{1} d\cos\theta \, |t_t|^2 - (1 - \eta^2) \int_{-1}^{1} d\cos\theta \, \left| t_t^{(0)} \right|^2 \tag{46}$$

and since $t_t^{(0)}$ contains the same singularity as t_L , the singularity of the triangle diagram will show up with a strength of $1 - \eta^2$.

A.V. Anisovich, V.V. Anisovich, Rescattering effects in three particle states and the Schmid theorem. Phys. Lett. B 345, 321 (1995)

$$\frac{d\Gamma_A^{(L)}}{dM_{\rm inv}(12)} \propto \int_{-1}^1 d\cos\theta \left| t_t^{(0)} \right|^2 \sim 2 \left(\frac{g_A g_R}{4p_3 q} \right)^2 \left| \ln \left(\frac{\Gamma_R}{\omega_R(p_3 - q) - \omega_R(p_3 + q)} \right) \right|^2.$$
(51)
$$\frac{d\Gamma_A^{(t)}}{dM_{\rm inv}(12)} \propto \frac{1}{4p_3 q} \frac{g_A^2 g_R^2}{\widetilde{E}_A - \omega_1(q)} \frac{\pi}{\Gamma_R}.$$

- First consequence: in the limit where Schmid theorem is exact, Γ =0, it is also irrelevant because the tree level is infinitely larger that the triangle singularity
- 2) The theorem does not hold when the 1+2 -> 1+2 amplitude has inelasticities
- 3) What happens when Γ is not small?

 $M_A = 2154 \,\mathrm{MeV}$ $M_R = 1600 \text{ MeV}, \quad \Gamma_R = 30 \text{ MeV}$ $M_1 = 500 \,{\rm MeV}$ $M_2 = 200 \,\mathrm{MeV}$ $M_3 = 900 \,\mathrm{MeV}.$

Example of relalistic calculation

$$t_{12,12} = \frac{g^2}{M_{\text{inv}}^2(12) - M_{\text{BW}}^2 + i\,\Gamma_{BW}(M_{\text{inv}}(12))M_{\text{inv}}(12)}$$

 $M_A = 2200 \text{ MeV}, \quad \Gamma_R = 0.5 \text{ MeV}.$

Conclusions:

- First consequence: in the limit where Schmid theorem is exact, Γ =0, it is also irrelevant because the tree level is infinitely larger that the triangle singularity
- 2) The theorem does not hold when the 1+2 -> 1+2 amplitude has inelasticities
- 3) For realistic widths do not rely upon Schmid theorem and evaluate the rescattering diagram
- 4) Even then, the coherent sum of tree level and TS rescattering changes the cross section, or differential width, less than an incoherent sum of the processes, and much less than a coherent sum of terms with the same phase. THE PROCESS STILL HAS SOME MEMORY OF SCHMID THEOREM