

Measurement of the *CP*-violating phase ϕ_s at LHCb

Xuesong Liu, on behalf of the LHCb collaboration Tsinghua University

XVIII International Conference on Hadron Spectroscopy and Structure August 2019, Guilin

CP-violation in B_s^0 mixing and decays, ϕ_s

- Assuming only SM tree level contribution, $\phi_s^{SM} = -2\beta_s$ angle in B_s^0 system analogous to β in B^0 system
- Possibility measurement in interference between B_s^0 mixing and decay.

• via $b \to c\bar{c}s$ transitions, with decays like $B_s^0 \to J/\psi h^+ h^- (h = K, \pi)$ Xuesong Liu 17th August 2019

CP-violation in B_s^0 mixing and decays, ϕ_s

- ϕ_s is sensitive to New Physics in B_s^0 mixing,
- ϕ_s^{SM} determined via global fit to CKM matrix

 $\phi_s^{\text{SM}} = -0.0368^{+0.0010}_{-0.0008}$ rad [CKMFitter], no penguins

• If $\phi_s^{\exp} \neq \phi_s^{SM}$, NP is found!

Status of ϕ_s before Spring 2019

- World average dominated by LHCb
- Results consistent with SM-based global fits to data, but still room for NP

Xuesong Liu

$\phi_s \text{ in } B_s^0 \rightarrow J/\psi K^+ K^- \text{ and } B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

$$B_s^0 \to J/\psi(\to \mu^+\mu^-)K^+K^-$$

p

- Relatively large BF, $\mathcal{O}(10^{-3})$
- The final state is a mixture of CP-even (L=0,2) and CP-odd (L=1+S-wave) components

• Allow to obtain
$$\Gamma_s = \frac{\Gamma_H + \Gamma_L}{2}$$
,
 $\Delta \Gamma_s = \Gamma_L - \Gamma_H$ and $\Delta m_s = m_H - m_L$

H : Heavy mass eigenstate

 B_s^0

 μ^+

L: Light mass eigenstate

Xuesong Liu

17th August 2019

$$B_s^0 \to J/\psi (\to \mu^+ \mu^-) \pi^+ \pi^-$$
• BR $\mathcal{O}(10^{-4})$

p

• Crosscheck of $B_s^0 \to J/\psi K^+ K^-$

μ

• Dominated by CP-odd components which allows to measure Γ_H

Key ingredients

Definition of time-dependent CP asymmetry

$$A_{\rm CP} \equiv \frac{\Gamma(\overline{B}(t) - f) - \Gamma(B(t) - f)}{\Gamma(\overline{B}(t) - f) + \Gamma(B(t) - f)} \approx \eta_f \sin(\phi_s) \sin\Delta(m_s t)$$

Experimentally it becomes

$$A_{\rm CP} = e^{\frac{1}{2}\Delta m_s \sigma_t^2} (1 - 2\omega) \eta_f \sin(\phi_s) \sin(\Delta m_s t)$$

Critical requirements

- Excellent decay-time resolution $\sigma_t \ll T$, B_s^0 oscillations fast $T \approx 350$ fs
- CP eigenvalue of the final state $\eta_f \Rightarrow$ angular analysis disentangles CP-odd and even mixture of the final states
- Tagging of meson flavor at production: probability of wrong tag ω
- Reliable modeling of decay-time efficiency $\epsilon(t)$ and angular efficiency $\epsilon(\Omega)$

Xuesong Liu

17th August 2019

New $B_s^0 \to J/\psi K^+ K^-_{[arXiv:1906.08356]}$ and $B_s^0 \to J/\psi \pi^+ \pi^-_{[PLB 797(2019) 134789]}$

Run-II LHCb measurements with 2015 (0.3 fb-1) and 2016 (1.6 fb-1) datasets

Analysis strategy

- Combinatorial background suppressed with a BDT using kinematic variables
- Background subtracted using *Plot* with B_s^0 candidate masses
- Careful study of decay-time resolution and efficiencies, angular efficiencies and flavor tagging
- JFit to 3 helicity angles and B_s^0 candidates decay time+ $(m_{\pi\pi} \text{ for } B_s^0 \rightarrow J/\psi \pi^+ \pi^-)$

Xuesong Liu

Background subtraction

 $B_s^0 \rightarrow J/\psi K^+ K^ B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Boosted decision tree is trained to select signal candidates

- $\Lambda_b^0 \to J/\psi p K$ subtracted with negative MC weights, $B^0 \to J/\psi K^+ \pi^-$ negligible
- Mass fit: combinatorial background (exp,) and signal $B_s^0 \rightarrow J/\psi K^+ K^-$
- $\Lambda_b^0 \to J/\psi p K$ and $B_s^0 \to J/\psi \eta' (\to \rho^0 \gamma)$ using MC shaped
- Combinatorial background estimated using wrong sign (WS) $J/\psi \pi^{\pm} \pi^{\pm}$ data

Decay-time resolution

 $\frac{B_s^0}{B_s^0} \rightarrow J/\psi K^+ K^ \frac{B_s^0}{M} \rightarrow J/\psi \pi^+ \pi^-$

 $\sigma(Z) \sim 100 \ \mu \,\mathrm{m}$

$t = d \times m_B / p_B$

• Pre-candidate decay-time error σ_t is calibrated using prompt J/ψ sample formed from J/ψ and two kaons (pions) from PV

$$\sigma_{\rm eff}(B_s^0 \to J/\psi K^+ K^-) = 45.5 \ {\rm fs}$$

$$\sigma_{\rm eff}(B_s^0 \to J/\psi \pi^+ \pi^-) = 41.5 \ {\rm fs}$$

- Impact of decay-time resolution, $\Delta m_s \approx 17.7 \text{ ps}^{-1}$
 - If $\sigma_{\rm eff} = 45$ fs, dilution factor $e^{\frac{1}{2}\Delta m_s \sigma_t^2} = 0.73$
 - If $\sigma_{\rm eff} = 90$ fs, dilution factor $e^{\frac{1}{2}\Delta m_s \sigma_t^2} = 0.28$

Xuesong Liu

17th August 2019

 $B_s^0 \to J/\psi K^+ K^-$

Decay-time efficiency

 $\begin{bmatrix} arXiv:1906.08356 \end{bmatrix} \begin{bmatrix} arXiv:1906.08356 \\ arXiv:1906.08356 \end{bmatrix} \begin{bmatrix} arXiv:1906.08356 \\ arXiv:1906.08356 \end{bmatrix} \begin{bmatrix} arXiv:1906.08356 \\ arXiv:1906.08356 \\ arXiv:1906.08356 \\ arXiv:1906.0835$

• Use $B^0 \rightarrow J/\psi K^{*0}(892)$ as control channel, fit simultaneously B^0 data, simulation and B_s^0 simulation

$$\epsilon_{\text{data}}^{B_s^0}(t) = \epsilon_{\text{data}}^{B^0}(t) \times \frac{\epsilon_{\text{MC}}^{B_s^o}(t)}{\epsilon_{\text{MC}}^{B^0}(t)}$$

• Method validated with $B^+ \rightarrow J/\psi K^+$

• $\Gamma_u - \Gamma_d = -0.0478 \pm 0.0013 \text{ ps}^{-1} \text{ (stat. only) vs. } (\Gamma_u - \Gamma_d)^{\text{PDG}} = -0.0474 \pm 0.0023 \text{ ps}^{-1}$ Xuesong Liu 17th August 2019

Angular and $m_{\pi\pi}$ efficiency

- Kinematic selection and detector acceptance can cause non uniform efficiency as function of decay angles and $m_{\pi\pi} (B_s^0 \to J/\psi \pi^+ \pi^-)$
- Efficiencies obtained from simulation and corrected to match the data
 - Method $B_s^0 \to J/\psi K^+ K^-$ validated on $B^+ \to J/\psi K^+$ and $B^0 \to J/\psi K^*$ data, good agreement are found

Xuesong Liu

17th August 2019

 $B_s^0 \to J/\psi \pi^+ \pi^-$

Angular and $m_{\pi\pi}$ efficiency

Angular and $m_{\pi\pi}$ efficiency obtained with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ simulation

Xuesong Liu

 $B_s^0 \to J/\psi K^+ K^ B_s^0 \to J/\psi \pi^+ \pi^-$

Flavour tagging

- Tagging power $\epsilon_{tag}(1-2\omega)^2$ is used to estimated the performance of flavor tagging
- More tagging power = better exploitation of data

 $\epsilon_{\text{tag}}(1 - 2\omega)^2 = 4.73 \pm 0.34 \%$

$$\epsilon_{\text{tag}}(1 - 2\omega)^2 = 5.06 \pm 0.38 \%$$

Xuesong Liu

 $B_{\rm s}^0 \to J/\psi K^+ K^-$

Systematics for $B_s^0 \rightarrow J/\psi K^+ K^-$

$|A_{\perp}|^2$ $|A_0|^2$ Source ϕ_s $|\lambda|$ $\Gamma_s - \Gamma_d$ $\Delta \Gamma_s$ Δm_s $\delta_{\perp} - \delta_0$ $\delta_{\parallel} - \delta_0$ $[ps^{-1}]$ rad $[ps^{-1}]$ ps^{-1} [rad] [rad] Mass: width parametrisation 0.00020.0010.00050.0006 0.050.009Mass: decay-time & angles dependence 0.0040.00370.00070.0022 0.0160.00040.010.0040.0002Multiple candidates 0.0011 0.00010.0010.0001 0.0006 0.010.002 0.00110.0003Fit bias 0.0330.00100.00030.0010.0006 0.00010.02 $C_{\rm SP}$ factors 0.0010 0.00010.0020.00010.010.0050.0010_ Time resolution: model applicability 0.0010.001_ Time resolution: t bias 0.00020.0003 0.0050.080.001 0.00320.0010Time resolution: wrong PV 0.0010.001_ Angular efficiency: simulated sample size 0.0010.0040.00110.00180.00040.0003_ _ Angular efficiency: weighting 0.00220.00430.00010.00020.0010.00110.00200.010.008 Angular efficiency: clone candidates 0.00050.00140.00020.0001 0.00020.002 0.0001--Angular efficiency: $t \& \sigma_t$ dependence 0.00120.0007 0.00020.006 0.0010 0.0030.00120.00080.030.00120.0008 Decay-time efficiency: statistical 0.00030.0002Decay-time efficiency: kinematic weighting 0.0002Decay-time efficiency: PDF weighting 0.00010.0001Decay-time efficiency: $\Delta \Gamma_s = 0$ simulation 0.00030.00050.00010.0002Length scale 0.004Quadratic sum of syst. 0.00640.00150.0026 0.00190.00240.00610.0180.100.037

[arXiv:1906.08356]

• Main systematic uncertainties on ϕ_s is flavor tagging ~ 0.015 rad, which incorporated in statistical

Xuesong Liu

 $B_s^0 \to J/\psi \pi^+ \pi^-$

Systematics for $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Source	$\Gamma_{\rm H} - \Gamma_{B^0}$	$ \lambda $	ϕ_s
	$[{\rm fs}^{-1}]$	$[\times 10^{-3}]$	[mrad]
Decay-time acceptance	2.0	0.0	0.3
$ au_{B^0}$	0.2	0.5	0.0
Efficiency $(m_{\pi\pi}, \Omega)$	0.2	0.1	0.0
Decay-time resolution width	0.0	4.3	4.0
Decay-time resolution mean	0.3	1.2	0.3
Background	3.0	2.7	0.6
Flavour tagging	0.0	2.2	2.3
Δm_s	0.3	4.6	2.5
$\Gamma_{\rm L}$	0.3	0.4	0.4
B_c^+	0.5	-	-
Resonance parameters	0.6	1.9	0.8
Resonance modelling	0.5	28.9	9.0
Production asymmetry	0.3	0.6	3.4
Total	3.8	29.9	11.0

[PLB 797(2019) 134789]

- $\Gamma_H-\Gamma_{B^0}$ mainly affected by Efficiency of $m_{\pi\pi}$ and Ω , ϕ_s and $|\lambda|$ by resonance modeling

Xuesong Liu

 $B_s^0 \to J/\psi K^+ K^ B_s^0 \to J/\psi \pi^+ \pi^-$

Results and new LHCb combination

 $B_{\rm s}^0 \rightarrow J/\psi K^+ K^ B_{\rm s}^0 \to J/\psi \pi^+ \pi^-$ [arXiv:1906.08356] [PLB 797(2019) 134789] $\phi_s = -0.057 \pm 0.060 \pm 0.011$ rad $\phi_s = -0.083 \pm 0.041 \pm 0.006$ rad $|\lambda| = 1.01^{+0.08}_{-0.06} \pm 0.03$ $|\lambda| = 1.012 \pm 0.016 \pm 0.006$ $\Gamma_s - \Gamma_d = -0.0041 \pm 0.0024 \pm 0.0015 \text{ ps}^{-1}$ $\Gamma_H - \Gamma_{B^0} = -0.050 \pm 0.004 \pm 0.004 \text{ ps}^{-1}$ $\Delta\Gamma_{\rm s} = 0.077 \pm 0.008 \pm 0.003 \ {\rm ps}^{-1}$ Combination of all LHCb (Run I+II) results LHCb Spring 2019 [arXiv:1906.08356] 68% CL contours $J/\psi\pi^+\pi^+$ 4.9 fb⁻¹ $(\Delta \log \mathcal{L} = 1.15)$ 0.12 $\phi_s = -0.041 \pm 0.025$ rad $|\lambda| = 0.993 \pm 0.010$ SM $\psi(2S)\phi$ 3 fb⁻¹ 0.10 $\Gamma_{\rm s} = -0.6562 \pm 0.0021 \ \rm ps^{-1}$ Combined LHCb 0.08 $J/\psi K^{+}K^{-}$ 4.9 $\Delta\Gamma_{\rm s} = 0.0816 \pm 0.0048 \ {\rm ps}^{-1}$

0.06

[arXiv:1906.08356]

-0.4

-0.2

Xuesong Liu

17th August 2019

0.4 ϕ_s [rad]

 $J/\psi K^+K^-$ high mass 3 fb⁻¹

0.2

-0.0

HFLAV combination

HFLAV combination

Prospects

Xuesong Liu

- Include gain in trigger for $B_s^0 \rightarrow D_s^+ D_s^$ after Upgrade 1
- Exploring new modes: $J/\psi(\rightarrow ee), \eta'(\rightarrow \rho^0\gamma, \eta\pi\pi, \gamma\gamma))$
- Expect to have
 - $\sigma^{\text{stat}} \sim 4 \text{ mrad } 300 \text{ /fb } (B_s^0 \rightarrow J/\psi\phi)$
 - $\sigma^{\text{stat}} \sim 3 \text{ mrad } 300 \text{ /fb (total)}$
- ϕ_s would be statistically limited

Summary

- More precise measurement of ϕ_s from $b\to c\bar{c}s$ transitions using 2015-2016 data sets
- Overall picture is SM-like in ϕ_s measurements
 - Current results are mostly statistically dominated
- Exploring new modes would improved our knowledge of ϕ_s
- LHCb 300/fb data would decrease $\sigma^{\text{stat}} \sim 3 \text{ mrad}$
- Analyses of 2017-2018 data sets are ongoing and significant precision improvement of ϕ_s measurement is expected
- Stay tuned for more results in the near future!

Backups

LHCb experiments

LHCb data set

- Run I
 - 2011 1 fb⁻¹, 7 TeV
 - 2012 2 fb⁻¹, 8 TeV
- Run II
 - 2015 0.3 fb⁻¹, 13 TeV
 - 2016 1.6 fb⁻¹, 13 TeV
 - 2017 1.7 fb⁻¹, 13 TeV
 - 2018 2.1 fb⁻¹, 13 TeV

Xuesong Liu

17th August 2019

Decay-time resolution

• Pre-candidate decay-time error is calibrated using prompt J/ψ sample formed from J/ψ and two kaons (pions) from PV

$$\sigma_{\text{eff}} = \sqrt{(-2/\Delta m_s^2) \ln D}, D = \sum_{i=1}^{3} f_i e^{-\sigma_i^2 \Delta m_s^2/2}$$

- Fit in bins of per-event decay-time error δ_t
- Method validated in MC comparing prompt and signal resolution

