

Recent results on CP Violation in Charm sector by LHCb

XVIII International Conference on Hadron Spectroscopy and Structure (HADRON 2019) Guilin, China, 2019/08/16-21

> SAUR Miroslav (<u>On behalf of the LHCb collaboration</u>)

University of Chinese Academy of Sciences

I. LHCb detector and data

LHCb detector 2010-2018

→ Single-arm forward spectrometer focused on heavy flavor (*b*, *c*) physics

Data taking 2010-2018

- → Run I (7-8 TeV, 2010-2012) and Run II (13 TeV, 2015-2018)
- → Average efficiency of the data taking > 90 %
- → Various systems: pp, p-Pb, Pb-Pb, SMOG (fixed target)

Measurement of charm at LHCb

→ Large charm cross section at LHCb:

NPB 871 1 (2016), JHEP05 074 (2017)

 $\sigma(pp \to c\bar{c}) = \frac{[1419 \pm 12 \ (stat.) \pm 116 \ (syst.) \pm 65 \ (frag.)]\mu b @ 7 \text{ TeV}}{[2369 \pm 3 \ (stat.) \pm 152 \ (syst.) \pm 118 \ (frag.)]\mu b @ 13 \text{ TeV}}$

 $p_{\rm T} < 8 GeV/c, 2.0 < y < 4.5$

- → Significant statistics collected already during the Run I:
 - About $5 \times 10^{12} \text{ D}^0$ and $2 \times 10^{12} \text{ D}^{*+}$ collected
- → Run II: higher collision energy and improved trigger \rightarrow more statistics than Run I

HADRON 2019

Experimental aspects at LHCb

→ Flavor tagging: prompt vs secondary \rightarrow LHCb uses both methods

- Production asymmetries (charge dependent):
 - Different cross-section for $D_{(s)}^+/D_{(s)}^-, \ \Lambda_c^+/\Lambda_c^-$, ...
- Detection asymmetries (charge and momentum dependent):
 - Different interactions with the detector material ($m K^+~vs~K^-,~\pi^+~vs~\pi^-$)

II. Charge-Parity Violation

Mixing of $D^0-\bar{D}^0$

- → D⁰ mesons are produced as a flavor eigenstates, but decays as mass eigenstates D₁ and D₂: $|D_1\rangle = p|D^0\rangle + q|\bar{D}^0\rangle$, $|D_2\rangle = p|D^0\rangle q|\bar{D}^0\rangle$, $|q|^2 + |p|^2 = 1$
- → Mixing occurs in the case: $\Delta M = M_1 M_2 \neq 0$ or $\Delta \Gamma = \Gamma_1 \Gamma_2 \neq 0$
- → Associated mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$, where: $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$
- ➔ Influence of short and long distance effects

→ For the small mixing parameters ($x, y < 10^{-2}$) the time-dependent asymmetry can be approximated as:

$$A_{CP}(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(D^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D^0}(t) \to f)} \simeq A_{CP}^{dir,f} - A_{\Gamma} \frac{f}{t_D}$$

where A_{Γ} is the asymmetry between effective decay widths of ${
m D}^0$ and ${ar {
m D}}^0$

$$A_{\Gamma} = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D^0} \to f)}$$

2019/08/17

HADRON 2019

2019/08/17

CPV classification

- CPV is present in the SM via Cabibbo-Kobayashi-Maskawa (CKM) mechanism, but is too weak to explain the Baryon asymmetry of the Universe
- → CPV has been firstly observed at Strange [PRL 13 138 (1964)] and Bottom [NP A 675 (2000), 398-403] sector, first observation in Charm sector (PRL 122 (2019) 211803)
- → Two types of CPV: Indirect (CPV in mixing, CPV in interference) and Direct

<u>CPV in mixing</u>

- → Independent on final state
- → Different mixing rates $D^0 \rightarrow \bar{D}^0$ and $\bar{D}^0 \rightarrow D^0$ $|\frac{q}{p}| \neq 1$
- → Accessible via the using flavor specifics decays
- → **SM** prediction: $\mathcal{O}(10^{-4})$

<u>CPV in interference</u>

→ Possibility of interference between mixing and decay amplitudes

$$\phi = \arg(\frac{q\bar{A}_f}{pA_f})$$

- → Can be observed as a decay-time-dependent difference in decay rates and as a timeintegrated difference
- → **SM** prediction: $\mathcal{O}(10^{-4})$

Direct CPV

- → Only possible CPV for charged hadrons
- \rightarrow Occurs in the case:

$$|\frac{A_{\bar{f}}}{A_f}| \neq 1$$

→ Typically (for SCS modes): $A_{CP} < 10^{-4} - 10^{-3}$

9/30

Charm sector and CPV

- Charm is unique, gives sensitivity to new physics coupling to up-type quark
- Charm is also difficult for theory calculations
- Complementary to direct searches for BSM particles
- → BSM contributions could be hidden in loops
- Assuming generic BSM scenarios, much larger scale are accessible with respect to direct searches
- → Flavour physics and CPV lead to breakthrough in particle physics many times

II. Recent LHCb results on CP violation in Charm

1. Measurement of the mass difference between neutral charm-meson eigenstates (PHYS. REV. LETT. 122 (2019) 231802)

2. Search for time-dependent *CP* violation in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays (LHCB-CONF-2019-001; INSPIRE: 1735332)

3. Observation of *CP* violation in charm decays (PHYS. REV. LETT. 122 (2019) 211803)

1. Measurement of the mass difference between neutral charm-meson eigenstates (PHYS. REV. LETT. 122 (2019) 231802)

D^o mass eigenstates Δm : introduction

- → CPV is an interference effect
- How to enhance our sensitivity?
- → LHCb Run I full sample
- → Prompt and semileptonic production of $D^0 \rightarrow K^0_S \pi^+ \pi^-$
- → Around 1.3×10^6 signal candidates for prompt production and around 1.0×10^6 for semileptonic decays
- Channel with a rich resonance spectrum
- Good sensitivity to mixing and timedependent CPV parameters via varying strong phases
- Experimentally complicated (decay dynamics and acceptance effects)

D⁰ mass eigenstates Δm : method

- Bin flip method (Phys. Rev. D 99, 012007): a novel approach minimizing dependence on amplitude model and detector acceptance
- → Data are binned in Dalitz plane $(R_{1-8}^{+/-})$ to keep strong phases approximately constant; input is taken from CLEO (Phys. Rev. D 82, 112006)
- Data are also binned in decay time (20 bins)
- → Ratio of yields in opposition bins across the bisection is measured
 - Cancellation of acceptance effects, also a good sensitivity to x

D⁰ mass eigenstates ∆m: fits

LHCP

* details in backup

slide 40

- Simultaneous least-squares fit* to prompt and semileptonic data
- Offset due to sample-specific efficiency variations across Dalitz plot
- → *CP*-averaged yield ratios as function of t/τ

D⁰ mass eigenstates Δm : results

The most precise measurement of x done by a single experiment, consistent with CP symmetry scenario

Parameter	Value	95.5% CL interval
$ \begin{array}{c} x \ [10^{-2}] \\ y \ [10^{-2}] \\ q/p \\ \phi \end{array} $	$\begin{array}{r} 0.27 \substack{+ 0.17 \\ - 0.15 \\ 0.74 \pm 0.37 \\ 1.05 \substack{+ 0.22 \\ - 0.17 \\ - 0.09 \substack{+ 0.11 \\ - 0.16 \end{array}}$	$\begin{bmatrix} -0.05, 0.60 \\ 0.00, 1.50 \end{bmatrix} \\ \begin{bmatrix} 0.55, 2.15 \\ -0.73, 0.29 \end{bmatrix}$

→ Combined with the world average, first evidence of x > 0 larger than 3σ

2. Search for time-dependent *CP* violation in $D^0 \rightarrow K^+K^$ and $D^0 \rightarrow \pi^+\pi^-$ decays (LHCB-CONF-2019-001; INSPIRE: 1735332)

CPV(t) in $D^0 \rightarrow h^+h^-$: introduction

$$A_{\Gamma} = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D^0} \to f)} \approx y(|\frac{q}{p}| - 1) - x\phi_f - yA_{CP}^{decay}(f)$$

$$\xrightarrow{CPV \text{ in interference}}{CPV \text{ in mixing}} \xrightarrow{CPV \text{ in interference}}{CPV \text{ in decay}} \times y(|\frac{q}{p}| - 1) + x\phi_f - yA_{CP}^{decay}(f)$$

$$\xrightarrow{CPV \text{ in decay}}{CPV \text{ in decay}} \times y(|\frac{q}{p}| - 1) + x\phi_f - yA_{CP}^{decay}(f)$$

- LHCb 2015-2016 data, prompt D*+ decays utilized for a tagging of D0 decays
- → Analysis done using two signal channels ${
 m D}^0
 ightarrow {
 m K}^+ {
 m K}^-/\pi^+\pi^-$ ($17 imes 10^6/5 imes 10^6$)
- → $D^0 \rightarrow K^- \pi^+$ control channel (146 × 10⁶) used for a full analysis procedure ×10³ validation ×10³

Asymmetry measured in 21 decay time bins

Current world average, (-3.2 ± 2.6) × 10⁻⁴, dominated by LHCb Run I measurement (Phys. Rev. Lett. 118, 261803)

2019/08/17

HADRON 2019

CPV(t) in $D^{0} \rightarrow h^{+}h^{-}$: detector asymmetry

- Time and momentum-dependent asymmetries arise from two main sources
 - Momentum-dependent detection asymmetry from tagging pion
 - Correlation between the measured decay time and the momentum of the D⁰ due to trigger requirements Entries / (0.1 GeV/c) 0.01 0.01 0.01 0.01 LHCb preliminary

 $D^0 \rightarrow K^- \pi^+$

15

 $p_{\rm T}(D^0)$ [GeV/c]

10

0.005

5

- → Effect can be cancelled by weighting events between D⁰ and anti-D⁰ candidates
 - Separate weighting for different experimental conditions (magnet polarity, year)
 - 3D momentum weighting

CPV(t) in D⁰ \rightarrow h⁺h⁻: systematic

- → Contamination of D^{*+} by the secondary decays
 - Measured decay time of secondary decays biased to longer decay time
 - Fraction of secondary decays increases as a function of time
- → Kinematic weighting depends on the exact binning
 - Bins has be to kept large enough to avoid large statistical fluctuations
 - Control channel used for bin size optimization

Source	$A_{\Gamma}(D^0 \to K^+ K^-)$	$A_{\Gamma}(D^0 \to \pi^+ \pi^-)$
Secondary decays	0.4	0.4
Δm background	0.3	0.5
$m(h^+h^-)$ background	0.3	0.2
Kinematic weighting	0.3	0.3
Sum in quadrature	0.7	0.8

HADRON 2019

CPV(t) in $D^0 \rightarrow h^+h^-$: results

 $A_{\Gamma}(K^+K^- + \pi^+\pi^-, 2011 - 2016) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$

- Systematic uncertainty reduced by 30 % with respect to previous LHCb analysis (Phys. Rev. Lett. 118, 261803)
- Consistent with CP symmetry
- → Dominated by statistical uncertainty → full Run II analysis in progress HADRON 2019

3. Observation of *CP* violation in charm decays (PHYS. REV. LETT. 122 (2019) 211803)

CPV in Charm: introduction

- → Full LHCb Run II data set
- → $D^0 \rightarrow K^+K^-/\pi^+\pi^-$ decays
- → Prompt $(44 \times 10^6/13 \times 10^6)$ and semileptonic production $(9 \times 10^6/3 \times 10^6)$
- Using Turbo data stream online reconstruction of data (Comput. Phys. Commun. 208 (2016) 35)
- Fit to invariant mass distribution to extract the raw asymmetries
- However, raw asymmetries are influenced by the production and detection asymmetries

PHYS. REV. LETT. 122 (2019) 211803

CPV in Charm: experimental issues

Detection and production asymmetries can be cancelled using suitable experimental procedure for prompt / semileptonic decays:

$$A_{\rm raw}(f) \approx A_{\rm CP}(f) + A_{\rm D}(D^0) + A_{\rm D}(\pi/\mu) + A_{\rm P}(D^{*+}/B)$$

→ $A_{raw}(f) = \frac{N(D^0 \to f) - N(\overline{D^0} \to f)}{N(D^0 \to f) + N(\overline{D^0} \to f)}$ - experimentally accessible asymmetry

- → $A_{CP}(f)$ physical *CP* asymmetry of final state *f*
- \rightarrow A_D(D⁰) D^o detection asymmetry, cancelled due to symmetric final states
- → $A_D(\pi/\mu)$ detection asymmetry of tagging particle
- → $A_P(D^{*+}/B)$ production asymmetry of mother particle
- Under the assumption of small experimental asymmetries, CP can be obtained as

$$\Delta A_{\rm CP} \equiv A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) = A_{\rm raw}(K^+K^-) - A_{\rm raw}(\pi^+\pi^-)$$

HADRON 2019

CPV in Charm: fiducial selection

- LHCb THCp
- Due to LHCb geometry, low momentum particle can be kicked out from the detector acceptance
- Such a regions of phase space generate very large raw detector asymmetries

This part of phase space must be removed in order of kinematic equalization

→ Same procedure for prompt/semileptonic decays (π/μ)

CPV in Charm: kinematic weighting

- Detection and production asymmetries depend on the kinematic of the reconstructed particles
- → Weighting procedure between modes to assure same kinematic
- → Variables prompt/semileptonic: $p_T(D^*), p(D^*), \phi(D^*) / p_T(D^0), p(D^0), \phi(D^0)$

PHYS. REV. LETT. 122 (2019) 211803

CPV in Charm: systematic

- Prompt mode dominated by:
 - Fit model
 - Default model: Sum of three Gaussian and Johnson Su function (prompt) and two Gaussians convolved with a power-law function (sl)
 - Alternative: Fitting pseudoexperiments with alternative models
 - Misreconstructed background
- Semileptonic mode dominated by mistagging of muon
 - Evaluated using control sample $B \to D^0 (\to K^- \pi^+) \mu X$

Source	π -tagged [10 ⁻⁴]	μ -tagged [10 ⁻⁴]
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	—
B^0 fraction	_	1
B reco. efficiency	—	2
Peaking background	0.5	_
Total	0.9	5

PHYS. REV. LETT. 122 (2019) 211803

HADRON 2019

CPV in Charm: results

→ Run II results:

$$\Delta A_{CP}^{\text{prompt}} = [-18.2 \pm 3.2(\text{stat}) \pm 0.9(\text{syst})] \times 10^{-4}$$

 $\Delta A_{CP}^{\text{semileptonic}} = \left[-9 \pm 8(\text{stat}) \pm 5(\text{syst})\right] \times 10^{-4}$

- Compatible with the previous LHCb results and the world average values
- → When combined with Run I LHCb results:

$$\Delta A_{CP}^{\text{RunI}+\text{RunII}} = [-15.4 \pm 2.9] \times 10^{-4}$$

- $\rightarrow \underline{CP \text{ violation at 5.3 } \sigma \text{ level}}$
- → ΔA_{CP} is mostly sensitive to direct CPV

2019/08/17

CPV in Charm: world average

→ Updated HFLAV fit

$$\Delta a_{CP}^{dir} = (-16.4 \pm 2.8) \times 10^{-4}$$

$$\Delta a_{CP}^{ind} = (2.8 \pm 2.6) \times 10^{-4}$$

- Compatible with SM
 - Most predictions on 10⁻⁴ - 10⁻³ level
- Progress in theory calculations needed
- Observation in other channels could provide a confirmation of this effect
- Thorough study needs to be done to decide if SM or BSM effect
- → Indirect CPV still missing

Conclusion and Outlook

- Different mass between CP-even and CP-odd D⁰ states
- Direct CPV in Charm observed for the first time
- ➔ Inconclusive if SM or BSM effects
- → Indirect CPV still unobserved

Future prospects

- LHCb has access to the world largest Charm sample analyses now have to exploit it
- → Belle-II is now preparing for data taking
- → Ongoing LHCb Upgrade 5x higher luminosity and new software trigger
- → 50/fb will be collected by 2030
- → Expected statistical uncertainty: $\mathcal{O}(10^{-4})$
- Also a possibilities to utilize rare and multi-body decays

Thank you for your attention

Planned LHCb upgrades

LHCb upgrade Phase I (Run III)

LHCb-TALK-2017-232 34 / 30

HADRON 2019

LHCb upgrade Phase I (Run III)

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	$0.17 \ [10]$	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	$0.6 imes 10^{-3}$	0.2×10^{-3}	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	—	0.17	0.03	0.02
$\operatorname{penguin}$	$2\beta_s^{ ext{eff}}(B^0_s o K^{*0} ar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{ m eff}(B^0 o \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	—	5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25%[14]	6~%	2%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25%[16]	8~%	2.5%	$\sim 10\%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} \ [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
$\operatorname{penguin}$	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10 12^{\circ} [19, 20]$	4°	0.9°	negligible
${ m triangle}$	$\gamma \ (B_s^0 \to D_s K)$	—	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi K^0_S)$	$0.8^{\circ} \ [18]$	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	—
CP violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

CERN/LHCC 2012-007

LHCb upgrade Phase II (Run V)

2019/08/17

HADRON 2019

LHCb upgrade Phase II (Run V)

Topics and observables	Experimental reach	Remarks
EW Penguins Global tests in many $b \to s\mu^+\mu^-$ modes with full set of precision observables; lepton universality tests; $b \to dl^+l^-$ studies	e.g. 440k $B^0 \to K^* \mu^+ \mu^-$ & 70k $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$; Phase-II $b \to d\mu^+ \mu^- \approx \text{Run-1} \ b \to s\mu^+ \mu^-$ sensitivity.	Phase-II ECAL required for lepton universality tests.
$\frac{\text{Photon polarisation}}{\mathcal{A}^{\Delta} \text{ in } B_s^0 \to \phi\gamma; B^0 \to K^* e^+ e^-;}$ baryonic modes	Uncertainty on $\mathcal{A}^{\Delta} \approx 0.02$; ~ $10k \ \Lambda_b^0 \to \Lambda \gamma, \ \Xi_b \to \Xi \gamma, \ \Omega_b^- \to \Omega \gamma$	Strongly dependent on performance of ECAL.
$b \to cl^- \bar{\nu}_l$ lepton-universality tests Polarisation studies with $B \to D^{(*)} \tau^- \bar{\nu}_{\tau}$; τ^-/μ^- ratios with B_s^0 , Λ_b^0 and B_c^+ modes	e.g. 8M $B \to D^* \tau^- \bar{\nu_\tau}, \tau^- \to \mu^- \bar{\nu_\mu} \nu_\tau$ & ~ 100k $\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_\tau$	Additional sensitivity expected from low- p tracking.
$\frac{B_s^0, B^0 \to \mu^+ \mu^-}{R \equiv \mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B_s^0 \to \mu^+ \mu^-);}$ $\tau_{B_s^0 \to \mu^+ \mu^-}; CP \text{ asymmetry}$	Uncertainty on $R \approx 20\%$ Uncertainty on $\tau_{B_s^0 \to \mu^+ \mu^-} \approx 0.03 \mathrm{ps}$	
$\frac{\mathbf{LFV} \ \tau \ \mathbf{decays}}{\tau^- \to \mu^+ \mu^- \mu^-,} \ \tau^- \to h^+ \mu^- \mu^-,$ $\tau^- \to \phi \mu^-$	Sensitive to $\tau^- \to \mu^+ \mu^- \mu^-$ at 10^{-9}	Phase-II ECAL valuable for background suppression.
$\frac{\mathbf{CKM \ \text{tests}}}{\gamma \ \text{with} \ B^- \to DK^-, \ B^0_s \to D^+_s K^- \ etc.}$ $\phi_s \ \text{with} \ B^0_s \to J/\psi K^+ K^-, \ J/\psi \pi^+ \pi^-$ $\phi_s^{s\bar{s}s} \ \text{with} \ B^0_s \to \phi\phi$ $\Delta\Gamma_d/\Gamma_d$ Semileptonic asymmetries $a^{d,s}_{sl}$ $ V_{ub} / V_{cb} \ \text{with} \ \Lambda^0_b, \ B^0_s \ \text{and} \ B^+_c \ \text{modes}$	Uncertainty on $\gamma \approx 0.4^{\circ}$ Uncertainty on $\phi_s \approx 3 \mathrm{mrad}$ Uncertainty on $\phi_s^{s\bar{s}s} \approx 8 \mathrm{mrad}$ Uncertainty on $\Delta\Gamma_d/\Gamma_d \sim 10^{-3}$ Uncertainties on $a_{\rm sl}^{d,s} \sim 10^{-4}$ $e.g. \ 120k \ B_c^+ \rightarrow D^0 \mu^- \bar{\nu_{\mu}}$	Additional sensitivity expected in CP observables from Phase-II ECAL and low- p tracking. Approach SM value. Approach SM value for $a_{\rm sl}^d$. Significant gains achievable from thinning or removing RF-foil.
<u>Charm</u> CP -violation studies with $D^0 \to h^+ h^-$, $D^0 \to K_s^0 \pi^+ \pi^-$ and $D^0 \to K^{\mp} \pi^{\pm} \pi^+ \pi^-$	e.g. $4 \times 10^9 \ D^0 \to K^+ K^-;$ Uncertainty on $A_{\Gamma} \sim 10^{-5}$	Access $C\!P$ violation at SM values.
Strange Rare decay searches	Sensitive to $K_{\rm S}^0 \rightarrow \mu^+ \mu^-$ at 10^{-12}	Additional sensitivity possible with downstream trigger enhancements.

HADRON 2019

LHC timeline

D⁰ mass eigenstates Δm : fits

- Simultaneous least-squares fit* for prompt and semileptonic data
- → Offset due to sample-specific efficiency variations across Dalitz plot

$$\chi^{2} = \sum_{\text{Pr, SL LL, DD}} \sum_{b,j} \left[\frac{(N_{-bj}^{+} - N_{bj}^{+} R_{bj}^{+})^{2}}{(\sigma_{-bj}^{+})^{2} + (\sigma_{bj}^{+} R_{bj}^{+})^{2}} + \frac{(N_{-bj}^{-} - N_{bj}^{-} R_{bj}^{-})^{2}}{(\sigma_{-bj}^{-})^{2} + (\sigma_{bj}^{-} R_{bj}^{-})^{2}} \right] + \chi^{2}_{X},$$

$$\chi^{2}_{X} = \sum_{a,b} \left[X_{a}^{\text{CLEO}} - X_{a} \right] (V_{\text{CLEO}}^{-1})_{ab} \left[X_{b}^{\text{CLEO}} - X_{b} \right].$$

- → Simultaneously applied for prompt/semileptonic data, D⁰/anti-D⁰
- → Two fits: *CP* symmetry scenario and indirect *CPV* allowed

VI. Future prospects for Run III and beyond

Prospect for indirect CPV searches

→ Results on the indirect CPV is already dominated by LHCb

1: BELLE2-TALK-CONF-2017-080

	$\sigma(x) \ [10^{-3}]$	$\sigma(y) \; [10^{-3}]$	$\sigma(q/p) \; [10^{-3}]$	$\sigma(\phi) [mrad]$
HFAG 2016	1.4	0.7	80	173
Run II	0.8	0.6	47	83
Run III	0.3	0.2	17	32
Belle II (50 ab ⁻¹) ¹	0.8	0.5	60	70

Prospects for direct CPV searches

- → Precision is already at $\mathcal{O}(10^{-3})$ level, one evidence for CPV in charm
- → With the the Run III data (50 fb⁻¹ in combination with Run I+II) the precision will be comparable with the **SM** prediction at $\mathcal{O}(10^{-4})$ level
- → Need for precise BR input by Belle II/HIEPA: $D^0 \rightarrow \pi^0 \pi^0$, $D^0 \rightarrow K_S K_S$, $D^0 \rightarrow \pi^0 \pi^+$
- 1) Multibody decays [slide: 42-43]
- 2) Rare decays (radiative, leptonic) [slide: 45]
- 3) Double Cabibbo Suppressed (DCS) decays (e.g. $D^+ \rightarrow K^+ \pi^+ \pi^-/K^+K^-K^+$)
- 4) Exploring charm baryons [slide: 46-47]
 - Measured 1st evidence for CPV in baryons: $\Lambda_b
 ightarrow p3\pi$ [Nature Phys. 13, 391-396 (2017)]

Prospect: CPV in N-body decays

- → Strong phase vary in Phase Space \rightarrow this leads to local *CPV* asymmetries
- Need for detailed study of Phase space
- → Model dependent: amplitude analysis
- → Model independent approach:

Binned approach

- → S_{cp} approach
- Significance of asymmetry in Dalitz plot [PLB 728 585 (2014)]

Unbinned approach (Energy test)

- Testing data consistency with no-CPV hypothesis
- Significance of asymmetry for each event

Prospect: direct CPV 4-body decays

- → The more precise detector → more possibilities with the study of D multi-body decays
- → The 2+3-body decays: only P-even amplitude accessible → CPV via C-violation
- → The 4-body decays: also P-odd amplitudes \rightarrow CPV via P-violation
- → We can write: $A_{CP}^{P-even} \approx \sin \Delta \phi_{weak} \sin \Delta \phi_{strong}$ $A_{CP}^{P-odd} \approx \sin \Delta \phi_{weak} \cos \Delta \phi_{strong}$
- → First measurement: $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$, *P*-odd *CPV* with the 2.7 σ significance [PLB 769 345-356 (2017)]

Mode	$A_{CP}^{P-odd} \ [10^{-3}]$	Exp.	Ref.
$D^+ \to K_S K^+ \pi^+ \pi^-$	$-12 \pm 10 \pm 5$	BaBar	PRD 84 031103
$\mathrm{D}^{0} \to \mathrm{K}^{+}\mathrm{K}^{-}\pi^{+}\pi^{-}$	$1.8 \pm 2.9 \pm 0.4$	LHCb	JHEP 10 005 (2014)
$D^0 \to K_S \pi^+ \pi^- \pi^0$	$-0.3 \pm 1.4^{+0.2}_{-0.8}$	Belle	PRD 95 091101

Prospect: CPV in rare decays

- → Large contribution from penguin diagrams \rightarrow larger values of CPV expected
- ➔ Two main categories: Leptonic and Radiative decays

Leptonic decays

- → First observation of $D^0 \rightarrow K^+K^-\mu^+\mu^$ and $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$
- → 5.4 σ signal
- → *CPV* up to $\mathcal{O}(10^{-2})$

Radiative decays

- → Large CPV within SM, up to 10 %
- → With the upgrade, LHCb will be competitive in ${\rm D}^0
 ightarrow
 ho\gamma, \phi\gamma, {\rm K}^*\gamma$
- → Belle measurement¹: $A_{CP}(D^0 \rightarrow \rho^0 \gamma) = (+5.6 \pm 15.1 \pm 0.6)\%$

CPV in charmed baryons

- → Several theoretical works about *CPV* in charmed baryons
- Multibody decays are preferred due to larger BR and access to CPV-odd observables

SCS

- → SM amplitudes are less suppressed, lower sensitivity to BSM amplitudes
- → Suggested channels: $\Lambda_c \rightarrow p\pi^+\pi^-/pK^+K^-$, $\Xi_c^+ \rightarrow pK^-\pi^+$

DCS

- → Significant suppression of SM amplitudes
- → No CP asymmetry from SM in such amplitudes
- → Suggested channel: $\Lambda_{\rm c}^+ \rightarrow {\rm pK}^+ \pi^-$

CPV in $\Lambda_c^+ \to p K^- K^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$

- → First measurement of CPV parameters in three-body Λ_c^+ decays
- → Full Run I (3 fb⁻¹) data used
- → The $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$ decay channel used in order to reduce prompt background
- → Two SCS decays studied: $\Lambda_c^+ \rightarrow pK^-K^+$ (25 k) $\Lambda_c^+ \rightarrow p\pi^-\pi^+$ (160 k)
- → Measurement of difference $\Delta A_{CP} = A_{raw}(pK^-K^+) A_{raw}(p\pi^-\pi^+)$ in order to cancel production and detection asymmetry

arXiv: 1712.07051

→ Final result: $\Delta A_{CP} = (0.30 \pm 0.91 \pm 0.61)$ %

CPV in $\Lambda_c^+ \to p K^- K^+$ and $\Lambda_c^+ \to p \pi^+ \pi^-$

- Obtained results in the 4 bins: collision energy and magnet polarity
- → <u>First</u> result of search for direct *CPV* search in three-body Λ_c^+ decays:

 $\Delta A_{CP} = [0.30 \pm 0.91 \text{ (stat.)} \pm 0.61 \text{ (syst.)}] \%$

arXiv: 1712.07051

- → Result shows no sign of direct CPV
- More data required for more precise measurement