Strange-Meson Spectroscopy at COMPASS

Stefan Wallner for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich

August 21, 2019 XVIII International Conference on Hadron Spectroscopy and Structure

Strange-Meson Spectroscopy

PDG

- PDG lists 25 strange mesons
- 13 established states, 12 need further confirmation
- Missing states with respect to quark-model prediction

Diffractive Production

Diffractive production in K⁻p scattering

- Strange mesons appear as intermediate states X⁻
- Observed in decays into quasi-stable particles: $K^-\pi^-\pi^+$ final state
 - Access to all K and K* states

COMPASS Setup for Hadron Beams

COMPASS Setup for Hadron Beams

Rich spectrum of overlapping and interfering X⁻

- Dominant well known states
- States with lower intensity are "hidden"

• Largest data set of diffractively produced $K^-\pi^-\pi^+$

 \blacktriangleright \approx 720 000 exclusive events

- Rich spectrum of overlapping and interfering X⁻
 - Dominant well known states
 - States with lower intensity are "hidden"
- Largest data set of diffractively produced $K^-\pi^-\pi^+$
 - \blacktriangleright \approx 720 000 exclusive events

• Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar

• Also structure in $\pi^-\pi^+$ and $K^-\pi^+$ subsystems

Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar

Isobar Model

Isobar Model

Partial wave a = J^P M^ε ξ⁰ b[−] L at fixed invariant mass of K[−]π[−]π⁺ system
 Calculate 5D decay phase-space distribution of final state

 $\Psi(\tau)$ describes distribution of wave *a* in decay phase-space variables τ Total intensity distribution: Coherent sum of partial-wave amplitude

• Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$

• Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Isobar Model

Partial wave a = J^P M^ε ξ⁰ b[−] L at fixed invariant mass of K[−]π[−]π⁺ system
 Calculate 5D decay phase-space distribution of final state

- $\Psi(\tau)$ describes distribution of wave *a* in decay phase-space variables au
 - ➡ Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(\tau) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \Psi_{a}(\tau)\right|$$

▶ Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$

Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Isobar Model

Partial wave a = J^P M^ε ξ⁰ b[−] L at fixed invariant mass of K[−]π[−]π⁺ system
 Calculate 5D decay phase-space distribution of final state

- $\Psi(\tau)$ describes distribution of wave *a* in decay phase-space variables au
 - Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(\tau) = \left| \sum_{a}^{\text{waves}} \mathcal{T}_{a} \Psi_{a}(\tau) \right|^{2}$$

→ Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$

Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Systematically construct set of allowed partial waves

- Spin $J \leq 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]_{S}^{K\pi}$, $[K\pi]_{S}^{K\eta}$, $K^{*}(892)$, $K^{*}(1680)$, $K_{2}^{*}(1430)$, $K_{3}^{*}(1780)$
 - $[\pi\pi]_{S}$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

 \Rightarrow "Wave pool" of 596 waves

Regularization

see talk by F. Kaspar, session 5)

- Fit wave pool to data
- lmpose penalty on $|\mathcal{T}_a|^2$
- Suppress insignificant waves

 $\Rightarrow\,$ Find the "best" subset of waves that describe the data

Systematically construct set of allowed partial waves

- Spin $J \leq 7$
- Angular momentum $L \leq 7$
- Positive naturality of exchange particle
- 12 isobars
 - $[K\pi]_S^{K\pi}$, $[K\pi]_S^{K\eta}$, $K^*(892)$, $K^*(1680)$, $K_2^*(1430)$, $K_3^*(1780)$
 - $[\pi\pi]_{S}$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$

 \Rightarrow "Wave pool" of 596 waves

Regularization

(see talk by F. Kaspar, session 5)

- Fit wave pool to data
- ▶ Impose penalty on $|\mathcal{T}_a|^2$
- Suppress insignificant waves

 $\Rightarrow\,$ Find the "best" subset of waves that describe the data

$1^+ \, 0^+ \, K^*(892) \, \pi \, S$

- Dominant signal
- ▶ *K*₁(1270), *K*₁(1400) double peak
- In agreement with previous observations

1⁺ 0⁺ ho(770) K S

- 3.4 % of total intensity
- **Dominated by** $K_1(1270)$
- Small potential signal from K₁(1650)
- Structure in rel. phase

$1^+ 0^+ K^*(892) \pi S$

- Dominant signal
- ▶ *K*₁(1270), *K*₁(1400) double peak
- In agreement with previous observations

$1^+ \, 0^+ \, ho$ (770) K S

- 3.4% of total intensity
- Dominated by $K_1(1270)$
- Small potential signal from K₁(1650)
- Structure in rel. phase

WA03 (CERN), 200 000 events, ACCMOR, NPB 187 (1981)

$1^+ 0^+ K^*(892) \pi S$

- Dominant signal
- ▶ *K*₁(1270), *K*₁(1400) double peak
- In agreement with previous observations

$1^+ \, 0^+ \, ho$ (770) K S

- ▶ 3.4% of total intensity
- Dominated by K₁(1270)
- Small potential signal from K₁(1650)
- Structure in rel. phase

$1^+ \, 0^+ \, K^*(892) \, \pi \, S$

- Dominant signal
- K₁(1270), K₁(1400) double peak
- In agreement with previous observations

1 $^+$ 0 $^+$ ho(770) K S

- ▶ 3.4% of total intensity
- Dominated by K₁(1270)
- Small potential signal from K₁(1650)
- Structure in rel. phase

$2^+ \, 1^+ \, K^*(892) \, \pi \, D$

- ▶ Signal in K₂*(1430) mass region
- In agreement with previous observations

$2^+ \, 1^+ \, ho(770) \, K \, D$

Signal in K^{*}₂(1430) mass region
 Clear phase motion in K^{*}₂(1430) region

$2^+ 1^+ K^*(892) \pi D$

- Signal in K^{*}₂(1430) mass region
- In agreement with previous observations

$2^+ 1^+ ho(770) \, K \, D$

Signal in K^{*}₂(1430) mass region
 Clear phase motion in K^{*}₂(1430) region

WA03 (CERN), 200 000 events, ACCMOR, NPB 187 (1981)

$2^+ 1^+ K^*(892) \pi D$

- ▶ Signal in K₂*(1430) mass region
- In agreement with previous observations

$2^+ \, 1^+ \, ho$ (770) K D

Signal in K^{*}₂(1430) mass region
 Clear phase motion in K^{*}(1430)

2⁺ 1⁺ *K*^{*}(892) π *D*

- Signal in K^{*}₂(1430) mass region
- In agreement with previous observations

$2^+ \, 1^+ \, ho$ (770) K D

- ▶ Signal in $K_2^*(1430)$ mass region
- Clear phase motion in K^{*}₂(1430) region

$4^+ 1^+ K^*(892) \pi G$

- Small intensity
- Signal in K^{*}₄(2045) mass region

$2^{-}0^{+}K_{2}^{*}(1430)\pi S$

- Strongest 2⁻ wave
- Two resonances in signal region
 K₂(1770), K₂(1820)
- Bump in high-mass shoulder
 - Potential K₂(2250)

$2^{-} 0^{+} \rho(770) KF / 2^{-} 0^{+} K^{*}(892) \pi F$

- Small intensity
- Bump in high-mass shoulder.
- Phase motion in signal region

$2^{-} 0^{+} K_{2}^{*}(1430) \pi S$

- Strongest 2⁻ wave
- Two resonances in signal region
 K₂(1770), K₂(1820)
- Bump in high-mass shoulder
 - Potential K₂(2250)

$2^{-} 0^{+} \rho$ (770) K F / $2^{-} 0^{+} K^{*}$ (892) π F

- Small intensity
- Bump in high-mass shoulder
- Phase motion in signal region

WA03 (CERN), 200 000 events, ACCMOR, NPB 187 (1981)

$2^{-} 0^{+} K_{2}^{*}(1430) \pi S$

- Strongest 2⁻ wave
- Two resonances in signal region
 K₂(1770), K₂(1820)
- Bump in high-mass shoulder
 - Potential K₂(2250)

$2^{-} 0^{+} \rho$ (770) K F / $2^{-} 0^{+} K^{*}$ (892) π F

- Small intensity
- Bump in high-mass shoulder
- Phase motion in signal region

$2^{-} 0^{+} K_{2}^{*}(1430) \pi S$

- Strongest 2⁻ wave
- Two resonances in signal region
 K₂(1770), K₂(1820)
- Bump in high-mass shoulder
 - Potential K₂(2250)

$2^{-} 0^{+} \rho$ (770) K F / $2^{-} 0^{+} K^{*}$ (892) π F

- Small intensity
- Bump in high-mass shoulder
- Phase motion in signal region

$2^{-} 0^{+} K_{2}^{*}(1430) \pi S$

- Strongest 2⁻ wave
- Two resonances in signal region
 K₂(1770), K₂(1820)
- Bump in high-mass shoulder
 - Potential K₂(2250)

$2^{-} 0^{+} \rho$ (770) K F / $2^{-} 0^{+} K^{*}$ (892) π F

- Small intensity
- Bump in high-mass shoulder
- Phase motion in signal region

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Observation of well-known states
- Observation of signals at 0.1 % level
- Potential signals from excited states

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of $[K\pi]_P$, $[K\pi]_S$, ... sub-systems

- Observation of well-known states
- Observation of signals at 0.1 % level
- Potential signals from excited states

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of $[K\pi]_P$, $[K\pi]_S$, ... sub-systems

- Worlds largest data set of diffractively produced K⁻π⁻π⁺
- Observation of well-known states
- Observation of signals at 0.1 % level
- Potential signals from excited states

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of $[K\pi]_P$, $[K\pi]_S$, ... sub-systems

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of $[K\pi]_P$, $[K\pi]_S$, ... sub-systems

- Worlds largest data set of diffractively produced K⁻π⁻π⁺
- Observation of well-known states
- Observation of signals at 0.1 % level
- Potential signals from excited states

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of $[K\pi]_P$, $[K\pi]_S$, ... sub-systems

- Worlds largest data set of diffractively produced K⁻π⁻π⁺
- Observation of well-known states
- Observation of signals at 0.1 % level
- Potential signals from excited states

- Further systematic studies of leakage effect
- Resonance-model fit of selected partial waves
- Freed-isobar analysis (see talk by F. Krinner, session 5)
 - Study amplitude of [Kπ]_P, [Kπ]_S, ... sub-systems

Spectroscopy of strange mesons

- Radio-frequency separated high-intensity high-energy kaon beam
- At least ×10 larger data set than world's largest data set
- Map out strange-meson spectrum with similar precision as unflavored light-meson spectrum
- Letter of intent: arXiv:1808.00848
- Proposal for phase-1: CERN-SPSC-2019-022

Backup

10 Wave-Set Selection

- **11** Palano-Pennington Parameterization for $[K\pi]_S$ Isobars
- 12 $m_{K^-\pi^-}$
- 13 t' Spectrum
- 14 Exclusivity
- 15 Leakage Effect

Wave-Set Size

- > 20 to 70 waves per $(m_{K\pi\pi}, t')$ cell
- Larger wave set for larger binning in *m*_{Kππ}
- Larger wave set in t' bins with more events

 $\ln \mathcal{L}_{\rm fit} = \ln \mathcal{L}_{\rm extended} + \ln \mathcal{L}_{\rm reg}$

$$\ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_{a}|; \Gamma) = -\ln \left[1 + \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}}\right]$$

- "Cauchy prior"
- Scale depends on acceptance

$$\Gamma_{a} = \frac{\Gamma}{\sqrt{\bar{\eta}_{a}}} \Rightarrow \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = \frac{\bar{N}_{a}}{\Gamma^{2}}$$

Regularization

 $\ln \mathcal{L}_{\rm fit} = \ln \mathcal{L}_{\rm extended} + \ln \mathcal{L}_{\rm reg}$

Palano-Pennington Parameterization for $[K\pi]_S$ Isobars

- Two-channel K-matrix ansatz: Kπ and Kη
- Kπ scattering (LASS, SLAC), η_c decays, χ-PT
- Contains three poles
 - $K_0^*(700), K_0^*(1430), K_0^*(1950)$

$K\pi \to K\pi$

- Use $T_{K\pi\to K\pi}$ and $T_{K\eta\to K\pi}$
 - $K\pi$ dominated by $K_0^*(1430)$
 - $K\eta$ dominated by $K_0^*(1950)$
- Unphysical extrapolation above 2.4 GeV/c²
 - Set amplitude to zero

Palano-Pennington Parameterization for $[K\pi]_S$ Isobars

- Two-channel K-matrix ansatz: Kπ and Kη
- Kπ scattering (LASS, SLAC), η_c decays, χ-PT
- Contains three poles
 - $K_0^*(700), K_0^*(1430), K_0^*(1950)$

 $K\eta \to K\pi$

- Use $T_{K\pi \to K\pi}$ and $T_{K\eta \to K\pi}$
 - $K\pi$ dominated by $K_0^*(1430)$
 - $K\eta$ dominated by $K_0^*(1950)$
- Unphysical extrapolation above 2.4 GeV/c²
 - Set amplitude to zero

t' Spectrum

Shallower for larger t'

Exclusivity

Exclusivity

- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K^{*}(892) π D wave
- Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

