SIMULATION STUDY OF THE $\overline{p}p \rightarrow \overline{\Sigma}^0 \Lambda$ REACTION AT \overline{P} ANDA AT FAIR

GABRIELA PÉREZ ANDRADE*, WALTER IKEGAMI ANDERSSON, KARIN SCHÖNNING, MICHAEL PAPENBROCK, JENNY REGINA

1

ON BEHALF OF THE \overline{P} ANDA COLLABORATION

FORSCHUNGZENTRUM JÜLICH UPPSALA UNIVERSITY

HADRON 2019

Member of the Helmholtz Association

- Introduction
- The $\overline{P}ANDA$ experiment at FAIR
- Analysis strategy
- Results
- Conclusions

INTRODUCTION

Open question in QCD:

a comprenhensive understanding of the strong interaction.

At high energies:

- α_s is weak
- pQCD is successful

At low and intermediate energies:

- α_s grows
- pQCD fails

To provide the effective degrees of freedom in the confinement domain is one of the challenges in modern physics

Non-perturbative QCD phenomena are connected to some of the **nucleons puzzles** *e.g.* :

- Mass •
- Spin * •
- Inner structure^{**} •

Figure extracted from *Hyperon Physics with PANDA at FAIR* Karin Schönning, The 12th International Workshop on Excited Nucleons,

Non-perturbative QCD phenomena are connected to some of the **nucleons puzzles** *e.g.* :

- Mass
- Spin *
- Inner structure^{**}

To learn more about a system, one can ***:

- Excite it
- Scatter on it
- Replace one of its building blocks:

HYPERONS

*C. A. Aidala et al., RMP 85 (2013) 655-691. ** G. A. Miller, PRL 99 (2007) 112001. ** * C. Granados et al., EPJA 53 (2017) 117

HYPERONS

- Strange hyperon production is governed by m_s~100 MeV, probing confinement domain.
- Spin observables are **experimentally accessible** and distinguish between different production models.
- $\overline{p}p \rightarrow \overline{Y}Y$ production models :
 - Occur through different kinematic channels
 - Have different degrees of freedom

Which are the relevant degrees of freedom? What is the role of spin?

Figure. Quark-Gluon picture

Figure. Meson exchange picture

$PREVIOUS \, \overline{p}p \ \rightarrow \ \overline{Y}Y \, MEASUREMENTS$

- Performed mainly at PS185 experiment at LEAR
- $\bar{p}p \rightarrow \bar{\Xi}^+\Xi$ measurements were performed with bubble chambers
- Cross sections and spin observables obtained for mainly single-strange $\,\overline{p}p\,\to\,\overline{Y}Y$ channels
- Little data at $\bar{p}_{beam} > 4 \text{ GeV/c}$
- No data on Ω

Figure. Johansson T 2003 Proceedings of 8th Int. Conf. on Low Energy Antiproton Physics 95

THE $\overline{p}p \ \longrightarrow \ \overline{\Sigma}{}^0 \Lambda \ \text{CHANNEL}$

- Comparisons between channels containing isospin partners such as $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$, $\overline{\Sigma}^0\Lambda$ and $\overline{\Sigma}^0\Sigma$, provides information about the role of the isospin in strangeness production.
- Data from PS185 shows a strongly forward peaked differential cross section down to the reaction threshold*:

The High Energy Storage Ring (HESR)

- Anti-proton beam within 1.5
- High resolution mode (Day One) $L \sim 10^{31} \text{cm}^{-2} \text{s}^{-1}$, dp/p = 4 × 10⁻⁵
- High luminosity mode (Design) $L \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, dp/p = 2 × 10⁻⁴

*Karin Schoenning talk at The 12th International Workshop on Excited Nucleons

10

Charm and exotics

• Hadrons in nuclei

Nucleon structure

•

Strangeness physics

THE **PANDA PHYSICS PROGRAM**

FEASIBILITY STUDIES OF $\overline{p}p \rightarrow \overline{Y}Y$ **RECONSTRUCTION AT PANDA**

- Single and double strange channels (so far)
- Exclusive event reconstruction (so far)
- Ideal pattern recognition and PID
- Cross section distribution based on data for $\overline{\Lambda}\Lambda$, $\overline{\Sigma}{}^{0}\Lambda$ and $\overline{\Xi}\Xi$ at 4.6 GeV/c
- Model prediction for $\overline{p}p \rightarrow \overline{\Xi}\Xi$ cross-section at 7 GeV/c

p _{beam}	Reaction	σ [μb]	Efficiency (%)	² Rate [min ⁻¹]
1.64	${}^{1}\overline{p}p \rightarrow \overline{\Lambda}\Lambda$	64.0	16	600
1.77	$\overline{p}p \rightarrow \overline{\Sigma}{}^0\Lambda$	10.9	?	?
6.0	$\overline{p}p \rightarrow \overline{\Sigma}{}^0\Lambda$	20	?	?
4.6	${}^{1}\overline{p}p \rightarrow \overline{\Xi}{}^{+}\Xi^{-}$	~ 1	8.2	6.4
7	${}^{1}\overline{p}p \rightarrow \overline{\Xi}{}^{+}\Xi^{-}$	~ 0.3	7.9	2.0

¹ W. Ikegami-Andersson (talk at FAIRNESS 2019)

² At Day One Luminosity mode: 10³¹ cm⁻² s⁻¹

ANALISIS STRATEGY : $\overline{p}p \rightarrow \overline{\Sigma}^0 \Lambda$

Two cases studied for $\overline{p}p \rightarrow \overline{\Sigma}^0 \Lambda$:

- 10k events at $p_{beam} = 1.771 \text{ GeV/c}$
- 10k events at $p_{beam} = 6 \text{ GeV/c}$

- Pre-selection
 - Final state particles identification
 - Photon energy selection
 - $\Lambda/\overline{\Lambda}$ reconstruction
 - Combine all $\pi^+ \bar{p} / \pi^- p$ respectively.
 - Kinematic fit on vertices

ANALISIS STRATEGY: $\overline{p}p \rightarrow \overline{\Sigma}^0 \Lambda$, $p_{beam} = 1.771 \, GeV/c$

- Final selection
 - Pre-selected $\overline{\Lambda}$ and γ combined.
 - $\bar{\Sigma}^0$ and Λ candidates combined.
 - 4-C fit on all the $\overline{\Sigma}^0 \Lambda$ pairs.

BACKGROUND GENERATION

- Generic hadronic background by DPM generator ($\overline{p}p \rightarrow anything$).
- Independent $\overline{\Lambda}\Lambda$ sample used as background
- $\overline{\Sigma}{}^0 \Lambda$ and $\overline{\Lambda}\Lambda$ channels were removed from DPM sample.
- Additional cut : 3σ around $m(\overline{\Lambda})$ and $m(\overline{\Sigma}^0)$

FINAL RESULTS, $p_{beam} = 1.771 \text{ GeV/c}$

Figure: Signal and background reconstruction. Simulation at p_{beam} = 1.771 GeV/c

Channel	$\overline{\Sigma}{}^0 \Lambda$	Combinatorial	DPM (90% C.L.)	$\overline{\Lambda}\Lambda$
Total	526 ± 23	38	<50.6	4
S/B		14	>11	120
ε(%)	5.3 ± 0.2	0.38	$< 5.1 \times 10^{-4}$	4.0×10^{-5}

Table: Final efficiencies for the signal and background samples at $p_{beam} = 1.771 \text{ GeV/c}$

ANALISIS STRATEGY, $p_{beam} = 6 \text{ GeV/c}$

- Final selection
 - Pre-selected $\overline{\Lambda}$ and γ combined
 - Cut in the photon energy boosted to its $\bar{\Sigma}^0$ rest frame.
 - $\bar{\Sigma}^0$ and Λ candidates combined.
 - 4-C fit on all the $\, \overline{\Sigma}{}^0 \, \Lambda \,$ pairs

BACKGROUND GENERATION

- DPM sample
- DPM sample filtered from all channels containing Λ and $\overline{\Lambda}$ hyperons
- Additional cuts:
 - 3σ and 5σ around $m(\overline{\Lambda})$ and $5\sigma m(\overline{\Sigma}^0)$ respectively
 - $\overline{\Lambda}$ decay vertex > 6 cm

FINAL RESULTS, $p_{beam} = 6 \text{ GeV/c}$

Figure: Signal and background reconstruction. Simulation at p_{beam} = 6 GeV/c

Channel	$\overline{\Sigma}^0 \Lambda$	Combinatorial	DPM	DPM filtered (90%C.L.)
Total	614 <u>+</u> 25	111	30	< 18
S/B		5.5	20.7	> 34.7
ε(%)	6.1 ± 0.3	1.1	3.0 ×10 ⁻⁶	$< 3.9 \times 10^{-6}$

Table: Final efficiencies for the signal and background samples at $p_{beam} = 6 \text{ GeV/c}$

FEASIBILITY STUDIES OF $\overline{p}p \rightarrow \overline{Y}Y$ **RECONSTRUCTION AT PANDA**

- Single and double strange channels (so far)
- Exclusive event reconstruction (so far)
- Ideal pattern recognition and PID
- Cross section distribution based on data for $\overline{\Lambda}\Lambda$, $\overline{\Sigma}{}^{0}\Lambda$ and $\overline{\Xi}\Xi$ at 4.6 GeV/c
- Model prediction for $\overline{p}p \rightarrow \overline{\Xi}\Xi$ cross-section at 7 GeV/c

p _{beam}	Reaction	σ [μb]	Efficiency (%)	² Rate [min ⁻¹]
1.64	${}^{1}\overline{p}p \rightarrow \overline{\Lambda}\Lambda$	64.0	16	600
1.77	$\overline{p}p \rightarrow \overline{\Sigma}{}^0\Lambda$	10.9	5.3	32
6.0	$\overline{p}p \rightarrow \overline{\Sigma}{}^0\Lambda$	20	6.1	96
4.6	${}^{1}\overline{p}p \rightarrow \overline{\Xi}{}^{+}\Xi^{-}$	~ 1	8.2	6.4
7	${}^{1}\overline{p}p \rightarrow \overline{\Xi}{}^{+}\Xi^{-}$	~ 0.3	7.9	2.0

¹ W. Ikegami-Andersson (talk at FAIRNESS 2019)

² At Day One Luminosity mode: 10³¹ cm⁻² s⁻¹

CONCLUSIONS

- Hyperons studies can provide valuable information to complement our knowledge of the strong interaction.
- The $\overline{P}ANDA$ experiment aims to increase the available data on single and multi-strange $\overline{p}p \rightarrow \overline{Y}Y$ processes.
- Feasibility studies of event reconstruction have been performed showing that high exclusive reconstruction efficiencies will be achievable at PANDA starting from Day One.

Previous measurements: $\overline{p}p \rightarrow \overline{\Sigma}^0 \Lambda$

The cross-section was parametrization in terms of the reduced four-momentum transfer

 $\vartheta^* =: c.m.$ scattering angle of the antihyperon p =: incoming \overline{p} c.m. momentum q =: outgoing $\overline{\Sigma}^0$ c.m. momentum

*H. Becker Nuclear Physics B141 (1978) 48-64 E. Klempt et al. Physics Reports 368 (2002) 119–316

Figure. Cross section parametrization, $\,p_{beam}=$ 1.771 GeV/c * (top) and $p_{beam}=$ 6 GeV/c (bottom)**

Why hyperons?

- Strange hyperon production is governed by m_s~100 MeV, probing confinement domain.
- Spin observables are model dependent and experimentally accessible *e.g.* **polarization**:

All ground state hyperons (Y) decay weakly^{*} \rightarrow Parity is violated. Consider:

$$Y\left(\frac{1}{2}\right) \to B\left(\frac{1}{2}\right) + M(0)$$

• Decay angular distribution given by

$$I(\cos\theta_B) \propto (1 + \alpha P_Y \cos\theta_B)$$

• Where :

 α : Asymmetry parameter (known) $\cos \theta_B$: Baryon emission angle (measured) P_Y : Hyperon polarization (extracted!)

²³ *Except for the $\overline{\Sigma}^0$, which decays electromagnetically

Exclusive event selection **p**_{beam} = 6 GeV/c

- Pre-selected $\overline{\Lambda}$ and γ combined.
- Cut in the photon energy boosted to its $\overline{\Sigma}{}^0$ rest frame.
- $\overline{\Sigma}{}^0$ and Λ candidates combined.
- 4-C fit on all the $\overline{\Sigma}{}^0 \Lambda$ pairs,
- Reject p < 0.01.
- Best pair selection according to χ^2 value.

Figure 4.18: Probability distribution corresponding to the vertex fit performed on the (a) Λ and (b) $\overline{\Lambda}$ respectively. Beam momenta $p_{beam} = 1.771 \text{ GeV/c.}$

Figure 4.20: Probability distribution corresponding to the vertex fit performed on the (a) Λ and (b) $\overline{\Lambda}$ respectively. Beam momenta $p_{beam} = 6 \text{ GeV/c}$.

Channel	$\bar{\Sigma}^0 \Lambda$	DPM	ĀΛ
Size	104	107	10 ⁵
$\sigma[\mu b]$	11	95,000	80
w	1	22	0.73

Channel	$\bar{\Sigma}^0\Lambda$	DPM	DPM filtered
Size	104	107	9 X 10 ⁶
$\sigma[\mu b]$	20.0	59,000	57,690
w	1	7.4	7.7

$$\epsilon = \frac{N_{reconstructed}}{N_{simulated}} \times 100\%$$

$$w_{anything} = \frac{N_{signal}}{N_{anything}} \frac{\sigma(\bar{p}p \to \bar{\Sigma}^0 \Lambda) BR(\bar{\Sigma}^0 \to \bar{\Lambda}\gamma) BR(\bar{\Lambda} \to \bar{p}\pi^+)^2}{\sigma(\bar{p}p \to \bar{\Sigma}^0 \Lambda) BR(\bar{\Sigma}^0 \to \bar{\Lambda}\gamma) BR(\bar{\Lambda} \to \bar{p}\pi^+)^2}$$

$$w_{\bar{\Lambda}\Lambda} = \frac{N_{signal}}{N_{\bar{\Lambda}\Lambda}} \frac{\sigma(\bar{p}p \to \bar{\Sigma}^0 \Lambda) BR(\bar{\Sigma}^0 \to \bar{\Lambda}\gamma) BR(\bar{\Lambda} \to \bar{p}\pi^+)^2}{\sigma(\bar{p}p \to \bar{\Sigma}^0 \Lambda) BR(\bar{\Sigma}^0 \to \bar{\Lambda}\gamma) BR(\bar{\Lambda} \to \bar{p}\pi^-)^2} \times \mathcal{L} \times \epsilon$$

Device	Polar angle coverage
MVD (Discs)	3° - 40°
MVD (Half-shells)	40° - 150°
STT	22° - 140°
GEM	0° - 22°
FT	0° - 10°

Table 4.4: Angular coverage of the principal tracking devices at the Target and Forward spectrometer at PANDA.

Device	Polar angle coverage
Barrel DIRC	22° - 140°
Forward endcap DIRC	5° - 22°
Barrel TOF	22° - 140°
RICH	5° - 22°

Table 4.5: Angular coverage of the principal PID devices in the Target and Forward spectrometers at PANDA.

Device	Polar angular coverage	Energy coverage (GeV)
Backward	151.4° - 169.7°	0.01 - 0.7
Barrel	22° - 140°	0.01 - 7.3
Forward	5° - 23.6°	0.01 - 14.6

Table 4.6: Angular acceptance and energy ranges at which each part of the calorimeter are used as PID device.