# Hidden charm pentaquark states and $\Sigma_c^{(*)} \bar{D}^{(*)}$ interaction in ChPT

#### Lu Meng (孟 璐)

Peking University

Based on Phys.Rev.D100,014031 (2019) and work in preparation

Together with B. Wang, G. J. Wang, and S. L. Zhu

2019.08.20 HADRON2019 Guilin

## Contents

#### 1 Introduction

- 2  $\Sigma_c^{(*)} \bar{D}^{(*)}$  interaction in ChPT
- 3 Numerical results: elastic channel
- 4 Summary and Outlook

## Introduction

#### $P_c$ states in LHCb

- In 2015,  $\Lambda_b \to J/\psi p K$ ,  $P_c(4380)$  and  $P_c(4450)$
- Recently,  $P_c(4450) \Rightarrow P_c(4440) + P_c(4457)$ ; A new state  $P_c(4312)$  with 7.3 $\sigma$ ; I = 1/2?



Phys.Rev.Lett. 115 (2015) 072001; Phys.Rev.Lett. 122 (2019) 222001 ;

#### Compact or molecular states ?

- Compact pentaquark states: tightly bounded states
- · Molecular states: loosely bound states of two color singlet hadrons
- The three  $P_c$  states under the thresholds 9 MeV, 5 MeV and 22 MeV
- Three  $P_c$  states are the good candidates of molecular states
- Our work

 $\Rightarrow$ Obtain the  $\Sigma_c^{(*)} \bar{D}^{(*)}$  potential in ChPT D-D,B-B interactions, Zhan-Wei Liu's talk

 $\Rightarrow$ Solve the Schrödinger Eq.



Phys.Rev.Lett. 122 (2019) 222001

#### Why Chiral perturbation theory (ChPT)?

- Effective field theory, model independence
  - $\Rightarrow$  Systematically expansion, controllable and estimable error
- Loop diagrams bring novel effect
  - $\Rightarrow$  Heavy quark symmetry violation
  - $\Rightarrow$  Novel structure in potential
- Lattice QCD: chiral extrapolation
- Analogy between Pc states and deuteron



• Modern theory of nucleon force Phys. Rept. 503, 1 (2011).; Rev. Mod. Phys. 81, 1773 (2009).



Lect.Notes Phys. 957 (2019) 1-396

## $\Sigma_c^{(*)} \bar{D}^{(*)}$ interaction in ChPT

#### Feynman diagrams of $\Sigma_c^{(*)} \overline{D}^{(*)}$ to NLO

• Topological diagrams



- $\Sigma_c \bar{D}, \Sigma_c \bar{D}^*, \Sigma_c^* \bar{D}$  and  $\Sigma_c^* \bar{D}^*$
- All intermediate states: heavy quark symmetry (HQS) partner states and  $\Lambda_c$
- Small-scale expansion:  $\frac{m_{\pi}}{\Lambda_{\chi}}$ ,  $\frac{p}{\Lambda_{\chi}}$  and  $\frac{\delta}{M} \sim \frac{\epsilon}{\Lambda}$  J.Phys. G24 (1998) 1831-1859
- Keep mass splitting, HQS violation effect
- Unknown low energy constants (LECs): contact terms

#### Heavy quark symmetry: violation

- The heavy quark spin symmetry (HQSS) is approximate, which will be broken in the couple-channel calculation. David Entem's talk
- HQS violation effect is more significant for the  $\Sigma_c^{(*)} \bar{D}$  systems than others



• Minimum of potential with the loosely bound state: -0.06-0.15 GeV.

#### The HQSS violation effect may change the existence of bound states.

#### Heavy quark symmetry: quark model

• The heavy dof.: spectators; light dof.: interactions

$$\begin{split} V_{\text{quark-level}} &= \left[ V_a + \tilde{V_a} \boldsymbol{l}_1 \cdot \boldsymbol{l}_2 \right] + \left[ \frac{V_c}{m_c} \boldsymbol{l}_1 \cdot \boldsymbol{h}_2 + \frac{V_d}{m_c} \boldsymbol{l}_2 \cdot \boldsymbol{h}_1 + \frac{V_e}{m_c^2} \boldsymbol{h}_1 \cdot \boldsymbol{h}_2 \right], \\ V_{\Sigma_c \bar{D}} &= V_1, \quad V_{\Sigma_c \bar{D}^*} = V_2 + \tilde{V}_2 \boldsymbol{S}_1 \cdot \boldsymbol{S}_2, \\ V_{\Sigma_c^* \bar{D}} &= V_3, \quad V_{\Sigma_c^* \bar{D}^*} = V_4 + \tilde{V}_4 \boldsymbol{S}_1 \cdot \boldsymbol{S}_2. \\ V_1 &= V_2 = V_3 = V_4 = V_a \\ \tilde{V}_2 &= \frac{2}{3} \tilde{V}_a, \quad V_4 = \frac{1}{3} \tilde{V}_a \end{split}$$

· Ignoring mass splittings in loops, the HQS manifests itself

M. Z. Liu, et.al Phys.Rev.Lett. 122, 242001; C. W. Xiao,et.al Phys.Rev. D100, 014021;Y. Shimizu, et.al arXiv:1904.00587...

• In QM, the HQS violation vanishes for  $\Sigma_c \bar{D}$  system

$$\langle \boldsymbol{l}_1 \cdot \boldsymbol{h}_2 \rangle = \langle \boldsymbol{l}_2 \cdot \boldsymbol{h}_1 \rangle = \langle \boldsymbol{h}_1 \cdot \boldsymbol{h}_2 \rangle = 0$$
 (1)

• QM: analytical terms; Loop diagrams: nonanalytical structures

#### Loops bring novel effects.

• Structures for two-nucleon force

 $\{1, \quad \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2, \quad i(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \boldsymbol{q} \times \boldsymbol{k}, \quad \boldsymbol{\sigma}_1 \cdot \boldsymbol{q} \boldsymbol{\sigma}_2 \cdot \boldsymbol{q}, \quad \boldsymbol{\sigma}_1 \cdot \boldsymbol{k} \boldsymbol{\sigma}_2 \cdot \boldsymbol{k}\} \quad \otimes \quad \{1, \quad \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2\}$ 

- For *S*-wave, two spin structures left:  $\{1, \sigma_1 \cdot \sigma_2\}$
- Above results base on that the Pauli matrices are nilpotent.
   ⇒ The power of the Pauli matrices is at most one.

$$[\sigma_i, \sigma_j] = i2\epsilon_{ijk}\sigma_k, \quad \{\sigma_i, \sigma_j\} = 2\delta_{ij}\mathbb{I}$$

• For the two-body systems with arbitrary spin

$$[S_i, S_j] = i\epsilon_{ijk}S_k, \quad \{S_i, S_j\} \not\sim \delta_{ij}\mathbb{I}$$

- For S-wave  $\Sigma_c^* \overline{D}^*$ :  $\{1, S_1 \cdot S_2, (S_1 \cdot S_2)^2, ...\}$
- In the loops, (S<sub>1</sub> ⋅ S<sub>2</sub>)<sup>2</sup> terms appear
   ⇒ heavy quark spin symmetry violation effect

#### Loops bring novel effects.

#### Weinberg's formalism: NN system

- The box diagrams is enhanced by pinch singularity, power count fails
- Time-ordered perturbation theory

$$Amp = \langle NN|H_I|NN \rangle + \sum_{\psi} \frac{\langle NN|H_I|\psi\rangle\langle\psi|H_I|NN\rangle}{E_{NN} - E_{\psi}}$$
(2)



- Only include the two particle irreducible (2PIR) graphs in potential
- Potential as the kernel of Lippmann-Schwinger Eq. or Schrödinger Eq.
- The tree level one-pion exchange diagrams would be iterated to generate the 2PR contributions automatically

Nucl.Phys. B363 (1991) 3-18; Phys.Lett. B291 (1992) 459-464; Nucl.Phys. A625 (1997) 758-788

.

$$Amp \sim (E_{inital} - E_{inter})^{-1}$$

$$p'_{1} \qquad p'_{2} \qquad \approx \left[ (m_{1} + m_{2} + \frac{p_{1}^{2}}{2m_{1}} + \frac{p_{2}^{2}}{2m_{2}}) - (m'_{1} + m'_{2} + \frac{p'_{1}^{2}}{2m_{1}} + \frac{p'_{2}^{2}}{2m_{2}}) \right]^{-1}$$

• When 
$$m_1 = m'_1$$
,  $m_2 = m'_2$ 

$$Amp \sim \frac{m}{p^2} \gg \frac{1}{\epsilon}$$

- $\Rightarrow$  Pinch singularity, power counting fails
- $\Rightarrow$  Pole of heavy hadrons
- $\Rightarrow$  Iterating  $1 \pi$  exchange (elastic channel)
- $\Rightarrow$  Need to be subtracted

• When 
$$m_1 - m_1' = \delta_1, m_2 - m_2' = \delta_2$$
  
$$Amp \sim \frac{1}{\delta_1 + \delta_2} \sim \frac{1}{\epsilon}$$

- $\Rightarrow$  small scale expansion, power counting works
- $\Rightarrow$  Pole of heavy hadrons
- $\Rightarrow$  Iterating  $1 \pi$  exchange

(inelastic channel)

 $\Rightarrow$  Depend on your scheme

#### **Couple Channel effect**



$$\Rightarrow$$
 tree:  $\Sigma_c \bar{D}^* - \Sigma_c \bar{D}^*$ 

 $\Rightarrow \text{box: } \Sigma_c \bar{D}^* \cdot \Sigma_c \bar{D}^* \cdot \Sigma_c \bar{D}^*$ subtract the 1- $\pi$  iteration  $\Rightarrow \text{box: } \Sigma_c \bar{D}^* \cdot \Sigma_c^* \bar{D}^* \cdot \Sigma_c \bar{D}^*$ no subtraction  $\Rightarrow \text{Couple channel effect: loops}$ 

- $\Rightarrow \text{tree}: \begin{cases} \Sigma_c D^* \Sigma_c D^* \\ \Sigma_c \bar{D}^* \Sigma_c^* \bar{D}^* \\ \Sigma_c^* \bar{D}^* \Sigma_c^* \bar{D}^* \end{cases}$
- $\Rightarrow \text{box: } \Sigma_c \bar{D}^* \cdot \Sigma_c \bar{D}^* \cdot \Sigma_c \bar{D}^*$ subtract the 1- $\pi$  iteration  $\Rightarrow \text{box: } \Sigma_c \bar{D}^* \cdot \Sigma_c^* \bar{D}^* \cdot \Sigma_c \bar{D}^*$ subtract the 1- $\pi$  iteration  $\Rightarrow \text{Couple channel effect: iterating tree.}$

## Numerical results: elastic channel

• For I = 1/2,

$$\mathcal{V}_{\Sigma_c \bar{D}} = -\mathbb{D}_1, \quad \mathcal{V}_{\Sigma_c \bar{D}^*} = -\mathbb{D}_1 + \frac{2}{3}\mathbb{D}_2 S_1 \cdot S_2$$
 (3)

- Package heavy mesons exchanged interaction like  $\rho$  and  $\omega$
- Renormalization
  - $\Rightarrow$  absorb the divergence in the loops
  - $\Rightarrow$  remove the scale dependence.
- · In our calculation, we omit the NLO contact terms
- The two LO contact LECs are varied to fit the three  $P_c$  states
- Some contribution from the NLO contact terms is incorporated
- Dimensional regularization,  $\overline{MS}\text{-scheme},\,\Lambda_{\chi}=1.0$  GeV; Gaussian regulator  $\Lambda\text{=}0.5~\text{GeV}$

$$V(r) = \frac{1}{(2\pi)^3} \int d^3 \boldsymbol{q} \, e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \mathcal{V}(\boldsymbol{q}) \mathcal{F}(\boldsymbol{q}), \quad \mathcal{F}(\boldsymbol{q}) = \exp(-\boldsymbol{q}^{2n} / \Lambda^{2n}) \tag{4}$$

#### LO results: single channel





#### **NLO: without** $\Lambda_c$



- The result deviate from those of LO which keep the HQS
- There is a very SMALL region where three states coexist as the molecular states
- Restricting the binding energy in exp., it is hard to reproduce three states as molecules simultaneously

| Set-I: $\mathbb{D}_1 = 42$ GeV $^{-2}$ , $\mathbb{D}_2 = -25$ GeV $^{-2}$ (in units of MeV). |                    |                      |                      |                        |  |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------|----------------------|----------------------|------------------------|--|--|--|--|
| $\Delta E I=\tfrac{1}{2};J\rangle$                                                           | $\Sigma_c \bar{D}$ | $\Sigma_c \bar{D}^*$ | $\Sigma_c^* \bar{D}$ | $\Sigma_c^* \bar{D}^*$ |  |  |  |  |
| $J = \frac{1}{2}$                                                                            | -29.1              | -6.7                 |                      | -26.6                  |  |  |  |  |
| $J = \frac{3}{2}$                                                                            |                    | -2.9                 | -34.3                | -2.6                   |  |  |  |  |
| $J = \frac{5}{2}$                                                                            |                    |                      |                      | ×                      |  |  |  |  |

#### **NLO: with** $\Lambda_c$



#### Why the contribution of $\Lambda_c$ so significant?

- $g_{\Lambda_c \Sigma_c \pi}$  and  $g_{\Sigma_c \Sigma_c \pi}$  are at the same order
- Accident degeneracy of Σ<sub>c</sub>D̄ and Λ<sub>c</sub>D̄\* amplify the amplitude
   ⇒ box diagrams Σ<sub>c</sub>D̄-Λ<sub>c</sub>D̄\*-Σ<sub>c</sub>D̄

$$Amp \sim (M_{\Sigma_c} + M_D - M_{\Lambda_c} - M_{D^*})^{-1} = (25 \text{ MeV})^{-1}$$



- The power counting is destroyed:  $M_{\Sigma_c} + M_D M_{\Lambda_c} M_{D^*} \ll m_\pi \sim \epsilon$
- Scheme with inelastic channels can solve the problem

### **Comparison of** *NN* and $\Sigma_c^{(*)} \overline{D}^{(*)}$

|                                               | NN                               | $\Sigma_c^{(*)} ar D^{(*)}$                                    |  |  |
|-----------------------------------------------|----------------------------------|----------------------------------------------------------------|--|--|
| Chiral dynamics                               | N - N                            | (light diquark)-(light quark)                                  |  |  |
| Inter. states                                 | Δ                                | $\Lambda_c$                                                    |  |  |
| Inter atataa                                  |                                  | HQSS partner states                                            |  |  |
| Inter. States                                 | -                                | e.g. $c(qq)_{s=1}^{I=1} = \Sigma_c + \Sigma_c^*$               |  |  |
| Hoovy quark limit                             | -                                | Pinch singularity in elastic channel                           |  |  |
| neavy quark infit                             |                                  | Including inelastic channel                                    |  |  |
| $M_{inter}$                                   | $M_{\Delta} > M_N$               | e.g. $M_{\Lambda_c} + M_{\pi} < M_{\Sigma_c}$                  |  |  |
| Image part                                    | w/o                              | w/                                                             |  |  |
| small scale expansion                         | work                             | fails in $\Sigma_c ar{D} - \Lambda_c ar{D}^* - \Sigma_c ar{D}$ |  |  |
| spin structure                                | $\sigma_1\cdot\sigma_2$          | $S_1 \cdot S_2,  (S_1 \cdot S_2)^2$                            |  |  |
| Weinberg composite                            | $ E_D  \ll \frac{m_\pi^2}{2\mu}$ | $ E_{P_c}  \sim rac{m_\pi^2}{2\mu} pprox 9 \; {\sf MeV}$      |  |  |
| hys.Rev. 137 (1965) B672-B678; Talks of Xian- | Wei Kang, Tetsuo Hyodo           | mage part of potential                                         |  |  |

- The potentials with the inelastic channels have been obtained
- Solving LS equation with these potentials is on-going

## **Summary and Outlook**

#### **Summary and Outlook**

- $\Sigma_c^{(*)} \bar{D}^{(*)}$  potential in ChPT to NLO
  - $\Rightarrow$  contact,  $1 \pi$ ,  $2 \pi$
  - $\Rightarrow$  Loops bring the novel effect
  - $\Rightarrow$  HQS breaking effect, Significant !
  - $\Rightarrow$  Novel spin structure in potential:  $(S_1 \cdot S_2)^2$ ...
  - $\Rightarrow$  Couple channel effect in two ways:

i)elastic channels only

- ii) with inelastic channels
- $\Rightarrow$  Different treatments to box diagrams for two ways
- $\Rightarrow \Lambda_c$ , Important!
- $\Rightarrow$  Reproduce three  $P_c$  states simultaneously as molecular states
- Outlook
  - $\Rightarrow$  Lattice QCD simulation on  $\Sigma_c^{(*)} \bar{D}^{(*)}$  potential is called for
  - $\Rightarrow$  Chiral extrapolation

## Thanks for your attention!

• For I = 1/2,

$$\mathcal{V}_{\Sigma_c \bar{D}} = -\mathbb{D}_1, \quad \mathcal{V}_{\Sigma_c \bar{D}^*} = -\mathbb{D}_1 + \frac{2}{3} \mathbb{D}_2 S_1 \cdot S_2 \tag{5}$$

- Package heavy mesons exchanged interaction like  $\rho$  and  $\omega$
- Renormalization
  - $\Rightarrow$  absorb the divergence in the loops
  - $\Rightarrow$  remove the scale dependence.
- Contact or pion-exchange? depend on regularization schemes
   Phys. Rev. D91, 034002 (2015).
- Depend on chiral truncation order; types of regulator and values of cutoff Phys. Rept. 503, 1 (2011).
- Dimensional regularization,  $\overline{MS}\text{-scheme},\,\Lambda_{\chi}=1.0$  GeV; Gaussian regulator  $\Lambda\text{=}0.5~\text{GeV}$

$$V(r) = \frac{1}{(2\pi)^3} \int d^3 \boldsymbol{q} \, e^{i \boldsymbol{q} \cdot \boldsymbol{r}} \mathcal{V}(\boldsymbol{q}) \mathcal{F}(\boldsymbol{q}), \quad \mathcal{F}(\boldsymbol{q}) = \exp(-\boldsymbol{q}^{2n} / \Lambda^{2n}) \tag{6}$$

#### **Potential**





QCD Lagrangian

$$\mathcal{L}_{QCD} = \sum_{f} \bar{q}_{f} (i \not D - \mathcal{M} q_{f}) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,c}$$
$$f = (u, d, s, c, b, t),$$
$$\mathcal{M} = diag(m_{u}, m_{d}, m_{s}, m_{c}, m_{b}, m_{t})$$



• two approximate symmetry: chiral symmetry and heavy quark symmetry

$$m_u, m_d, m_s \ll 1 \text{GeV}, \quad m_c, m_b \gg \Lambda_{QCD}$$
 (7)

- Chiral perturbation theory (ChPT) and heavy quark effective theory (HQET)
- $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V \Rightarrow 8$  Goldstone bosons
- Quark masses break the chiral symmetry explicitly:  $m_\pi^2 \sim m_q$
- Freedom: Goldstone bosons and matter fields, e.g. N, D and  $\Sigma_c$
- Expansion  $\epsilon/\Lambda_{\chi}$ ,  $\Lambda_{\chi} \approx 4\pi F_{\pi} \approx m_{\rho}$

 $\epsilon:m_{\pi},$  momentum of pion and residue momentum of matter fields

#### **Contact terms of NN**

| C <sub>S</sub>   | $C_T$ | $\Lambda$ , channel | $C_S$           | C <sub>T</sub> | $\Lambda$ , channel |  |
|------------------|-------|---------------------|-----------------|----------------|---------------------|--|
| Ordonez:1995rz   |       |                     | Epelbaum:2004fk |                |                     |  |
| 112              | 13.5  | I = 0               | -107.57         | -11.64         | $\{0.45, 0.5\}, np$ |  |
| -26.6            | -68.9 | I = 1               | 88.61           | 53.20          | $\{0.6, 0.5\}, np$  |  |
| Machleidt:2011zz |       |                     | -121.08         | -6.17          | $\{0.45, 0.7\}, np$ |  |
| -100.28          | 5.61  | $\Lambda = 0.5, np$ | 33.70           | 25.66          | $\{0.6, 0.7\}, np$  |  |
| -99.55           | 7.07  | $\Lambda = 0.6, np$ |                 |                |                     |  |

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2}C_S\bar{N}N\bar{N}N - \frac{1}{2}C_T\bar{N}\sigma N \cdot \bar{N}\sigma N, \qquad (8)$$

$$\mathcal{V}_{NN} = C_S + C_T \boldsymbol{\sigma} \cdot \boldsymbol{\sigma}. \tag{9}$$

#### pinch singularities

$$V \sim \int \frac{d^d \lambda^{4-d}}{(2\pi)^d} \frac{1}{-v \cdot l + i\epsilon} \frac{1}{v \cdot l + i\epsilon} \frac{1}{l^2 - m_1^2 + i\epsilon} \frac{1}{(l+q)^2 - m_2^2 + i\epsilon}$$
(10)  
 
$$\sim \int \frac{d^d \lambda^{4-d}}{(2\pi)^d} \frac{1}{-l^0 + i\epsilon} \frac{1}{l^0 + i\epsilon} \frac{1}{l^{02} - \omega_1^2 + i\epsilon} \frac{1}{l^{02} - \omega_2^2 + i\epsilon}$$
(11)

$$\frac{1}{-v \cdot l + i\epsilon} \frac{1}{v \cdot l + i\epsilon} \to \frac{1}{-v \cdot l - \frac{l^2}{2M_1} + i\epsilon} \frac{1}{v \cdot l - \frac{l^2}{2M_2} + i\epsilon}$$
(12)

$$\int dl^{0} \frac{f(l^{0})}{-l^{0} - \frac{l^{2}}{2M_{1}} + i\epsilon} \frac{1}{l^{0} - \frac{l^{2}}{2M_{2}} + i\epsilon}$$
(13)  
$$\sim \frac{f(\frac{l^{2}}{2M_{2}})}{-\frac{l^{2}}{2M_{2}} - \frac{l^{2}}{2M_{1}}} \sim f\frac{M}{l^{2}}$$
(14)

power counting:  $\frac{1}{l}$ , our calculation  $\frac{M}{l^2}$ 

#### **The Lagrangians**

$$\Sigma_{c} = \begin{pmatrix} \Sigma_{c}^{++} & \frac{\Sigma_{c}^{+}}{\sqrt{2}} \\ \frac{\Sigma_{c}^{+}}{\sqrt{2}} & \Sigma_{c}^{0} \end{pmatrix}, \ \Sigma_{c}^{*\mu} = \begin{pmatrix} \Sigma_{c}^{*++} & \frac{\Sigma_{c}^{*+}}{\sqrt{2}} \\ \frac{\Sigma_{c}^{*+}}{\sqrt{2}} & \Sigma_{c}^{*0} \end{pmatrix}^{\mu},$$
(15)  
$$\tilde{P} = \begin{pmatrix} \bar{D}^{0} \\ \bar{D}^{-} \end{pmatrix}, \quad \tilde{P}^{*\mu} = \begin{pmatrix} \bar{D}^{*0} \\ \bar{D}^{*-} \end{pmatrix},$$
(16)  
$$\psi^{\mu} = \mathcal{B}^{*\mu} - \sqrt{\frac{1}{3}}(\gamma^{\mu} + v^{\mu})\gamma^{5}\mathcal{B},$$
$$\tilde{H} = (\tilde{P}_{\mu}^{*}\gamma^{\mu} + i\tilde{P}\gamma_{5})\frac{1-\dot{p}}{2}$$
(17)

$$\mathcal{L}_{\Sigma_{c}\phi}^{(0)} = -\text{Tr}[\bar{\psi}^{\mu}iv \cdot D\psi_{\mu}] + ig_{a}\epsilon_{\mu\nu\rho\sigma}\text{Tr}[\bar{\psi}^{\mu}u^{\rho}v^{\sigma}\psi^{\nu}] + i\frac{\delta_{a}}{2}\text{Tr}[\bar{\psi}^{\mu}\sigma_{\mu\nu}\psi^{\nu}].$$
  
$$\mathcal{L}_{\bar{D}\phi}^{(0)} = -i\langle\bar{H}v \cdot D\bar{H}\rangle + g_{b}\langle\bar{H}u_{\mu}\gamma^{\mu}\gamma_{5}\bar{H}\rangle - \frac{\delta_{b}}{8}\langle\bar{H}\sigma^{\mu\nu}\bar{H}\sigma_{\mu\nu}\rangle,$$
(18)