

Institute of Physics, University of São Paulo, Brazil.

Predictions for Ω_b and Ξ_{cc} molecular states from meson-baryon interactions

Jorgivan M. Dias

São Paulo Research Foundation

In collaboration with: V. R. Debastiani Xie Ju-Jun Wei-Hong Liang E. Oset

Theoretical Framework: writing the channels

TABLE I.	Baryon-pseudoscalar states ($J^P = 1/2^-$) chosen and
threshold m	ass in MeV.

Channel	$\Xi_{cc}\pi$	$\Lambda_c D$	$\Xi_{cc}\eta$	$\Omega_{cc}K$	$\Sigma_c D$	$\Xi_c D_s$	$\Xi_c' D_s$
Threshold	3759	4154	4169	4208	4321	4438	4545

Charm = 2, Strangeness =0, and Isospin =1/2

TABLE II. Baryon-pseudoscalar states $(J^P = 3/2^-)$ chosen and threshold mass in MeV.

Channel	$\Xi_{cc}^{*}\pi$	$\Xi_{cc}^*\eta$	Ω_{cc}^*K	$\Sigma_c^* D$	$\Xi_c^* D_s$
Threshold	3840	4250	4291	4385	4615

TABLE III. Baryon-vector meson states $(J^P = 1/2^-, 3/2^-)$ chosen and threshold mass in MeV.

Channel	$\Lambda_c D^*$	$\Xi_{cc}\rho$	$\Xi_{cc}\omega$	$\Sigma_c D^*$	$\Xi_c D_s^*$	$\Omega_{cc}K^*$	$\Xi_{cc}\phi$	$\Xi_c' D_s^*$
Threshold	4295	4397	4404	4462	4582	4606	4641	4689

TABLE IV.	Baryon-vector meson states	$(J^P = 1/2^-, 3/2^-,$
$5/2^{-}$) chosen	and threshold mass in MeV.	

Channel	$\Xi_{cc}^* ho$	$\Xi_{cc}^*\omega$	$\Sigma_c^* D^*$	$\Omega_{cc}^* K^*$	$\Xi_{cc}^{*}\phi$	$\Xi_c^* D_s^*$
Threshold	4478	4485	4526	4689	4722	4759
	3					

$$\begin{array}{c} M_{i} \\ & & M_{f} \\ & & V \\ B_{i} \\ \end{array} \xrightarrow{} B_{f} \\ \end{array}$$

However, we can use the Lagrangians from Hidden Gauge Symmetry?

Phys. Rep. 381, 1 (2003). $\phi =$ Phys. Rep. 161, 213 (1988) Phys. Rep. 164, 217 (1988) V_{μ}

$$J_{vvv} = -ig \langle [\phi, \partial_{u}\phi] V^{u} \rangle$$

$$G_{vvv} = -ig \langle [\psi, \partial_{u}\phi] V^{u} \rangle$$

$$G_{vvv} = ig \langle (V^{u}\partial_{v}V_{u} - \partial_{v}V^{u}V_{u}) V^{v} \rangle$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

$$f_{\mu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu}, \quad SU(3)$$

	meson-l	(baryon s	oscalar						
	$PB_{1/2}$	$\Xi_{cc}\pi$	$\Lambda_c D$	$\Xi_{cc}\eta$	$\Omega_{cc}K$	$\Sigma_c D$	$\Xi_c D_s$	$\Xi_c' D_s$	
	$\Xi_{cc}\pi$	-2	0	$-\frac{\sqrt{2}}{3}$	$-\sqrt{\frac{3}{2}}$	0	0	0	
	$\Lambda_c D$		-1	0	0	0	-1	0	
	$\Xi_{cc}\eta$			0	$-\frac{1}{\sqrt{3}}$	0	0	0	
	$\Omega_{cc}K$				-1	0	0	0	
	$\Sigma_c D$					-3	0	$-\frac{1}{\sqrt{3}}$	
	$\Xi_c D_s$ $\Xi' D$					R	-1	0	
	$\underline{}_{c}D_{s}$					\rightarrow	<u></u>	<u> </u>	
1							\backslash		
Therefore,	M _i -		V V		Mf	V.	; ; ; ; ;	ij <u>1</u> 0 4f2	$(p^{0}+p^{10})$
	₿; -			、	Bf				

Results for meson-baryon for J=1/2

We get three states:

Poles	and couplings in th	e $PB_{1/2}, J$	$I^P = 1/2^-$ sector,	with $q_{\rm max} = 650$	MeV, and	$\int g_l G_l^{\text{II}}$ in	MeV.
3837.26 + <i>i</i> 100.48	$\Xi_{cc}\pi$	$\Lambda_c D$	$\Xi_{cc}\eta$	$\Omega_{cc}K$	$\Sigma_c D$	$\Xi_c D_s$	$\Xi_c' D_s$
$egin{array}{l} g_l \ g_l G_l^{II} \end{array}$	1.72 + i1.30 -74.27 - $i12.89$	0 0	0.41 + i0.32 -2.11 - i2.41	0.80 + i0.77 -4.03 - i5.35	0 0	0 0	0 0
4082.79	$\Xi_{cc}\pi$	$\Lambda_c D$	$\Xi_{cc}\eta$	$\Omega_{cc}K$	$\Sigma_c D$	$\Xi_c D_s$	$\Xi_c' D_s$
$egin{array}{l} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0 0	0 0	0 0	0 0	8.86 -31.29	0 0	1.93 -4.04
4092.20	$\Xi_{cc}\pi$	$\Lambda_c D$	$\Xi_{cc}\eta$	$\Omega_{cc}K$	$\Sigma_c D$	$\Xi_c D_s$	$\Xi_c' D_s$
$egin{array}{l} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0 0	4.01 -29.49	0 0	0 0	0 0	3.75 -9.76	0 0

10

Results for meson-baryon for J=3/2

Two states were obtained in this case:

Poles a	nd couplings in the PB	$_{3/2}, J^P = 3/2$	2^- sector, with $q_{\text{max}} =$	= 650 MeV, and $g_l G_l^{II}$	in MeV.
3918.15 + <i>i</i> 100.32	$\Xi_{cc}^{*}\pi$	$\Xi_{cc}^*\eta$	Ω_{cc}^*K	$\Sigma_c^* D$	$\Xi_c^* D_s$
$egin{array}{l} g_l \ g_l G_l^{II} \end{array}$	$1.72 + i1.30 \\ -74.27 - i12.91$	0 0	0.41 + i0.32 -2.10 - i2.41	0.80 + i0.76 -3.99 - i5.30	0 0
4149.67	$\Xi_{cc}^{*}\pi$	$\Xi_{cc}^*\eta$	Ω_{cc}^*K	$\Sigma_c^* D$	$\Xi_c^* D_s$
$egin{array}{c} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0 0	0 0	0 0	8.82 -31.46	1.30 -2.71

Results for meson-baryon: 1/2 and 3/2

For vector mesons, we have a degenerate case: 1/2 and 3/2: 4 bound states!

		Poles	and	coupling	gs in	the V	$B_{1/2},$	$J^P =$
1/2-, 3/	2^{-} sec	tor, with	n q_{\max}	= 650 N	AeV, a	and $g_l G$	l^{II}_{l} in N	IeV.
4217.21	$\Lambda_c D^*$	$\Xi_{cc}\rho$	$\Xi_{cc}\omega$	$\Sigma_c D^*$	$\Xi_c D_s^*$	$\Omega_{cc}K^*$	$\Xi_{cc}\phi$	$\Xi_c' D_s^*$
$egin{array}{c} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0 0	0 0	0 0	9.31 -30.40	0 0	0 0	0 0	2.03 -3.94
4229.19	$\Lambda_c D^*$	$\Xi_{cc}\rho$	$\Xi_{cc}\omega$	$\Sigma_c D^*$	$\Xi_c D_s^*$	$\Omega_{cc}K^*$	$\Xi_{cc}\phi$	$\Xi_c' D_s^*$
${g_l \over g_l G_l^{\mathrm{II}}}$	4.21 -28.70	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	3.98 -9.59	$\begin{array}{c} 0 \\ 0 \end{array}$	0 0	0 0
4293.12	$\Lambda_c D^*$	$\Xi_{cc}\rho$	$\Xi_{cc}\omega$	$\Sigma_c D^*$	$\Xi_c D_s^*$	$\Omega_{cc}K^*$	$\Xi_{cc}\phi$	$\Xi_c' D_s^*$
$egin{array}{l} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0 0	3.71 -37.49	1.16 -11.30	0 0	0 0	2.42 -12.42	-0.45 1.96	0 0

Results for meson-baryon: 1/2 and 3/2

For vector mesons and baryons with 3/2, we have: 1/2, 3/2 and 5/2: 2 bound states!

Poles and couplings in the $VB_{3/2}$, $J^P = 1/2^-, 3/2^-, 5/2^-$ sector, with $q_{\text{max}} = 650$ MeV, and $g_l G_l^{\text{II}}$ in MeV.

4280.43	$\Xi_{cc}^* ho$	$\Xi_{cc}^*\omega$	$\Sigma_c^* D^*$	$\Omega_{cc}^* K^*$	$\Xi_{cc}^{*}\phi$	$\Xi_c^* D_s^*$
$egin{array}{l} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	0	0	9.31	0	0	2.03
	0	0	-30.42	0	0	-3.90
4374.00	$\Xi_{cc}^* ho$	$\Xi_{cc}^{*}\omega$	$\Sigma_c^* D^*$	$\Omega_{cc}^* K^*$	$\Xi_{cc}^{*}\phi$	$\Xi_c^* D_s^*$
$egin{array}{l} g_l \ g_l G_l^{\mathrm{II}} \end{array}$	3.70	1.15	0	2.42	-0.44	0
	-37.53	-11.30	0	-12.35	1.94	0

Part II: Ω_b weak decay

$$\frac{d\Gamma}{dM_{\text{inv}}(\Xi_c\bar{K})} = \frac{1}{(2\pi)^3} \frac{M_{\Xi_c}}{M_{\Omega_b^-}} p_{\pi^-} \tilde{p}_{\bar{K}} |t_{\Omega_b^- \to \pi^- \Xi_c\bar{K}}|^2$$
How do we get it?
$$\pi^- \qquad \Xi_c$$

Pole position [MeV], couplings g_i [dimensionless], and wave functions at the origin $g_i G_i^{II}$ [MeV] from pseudoscalar(0⁻)-baryon(1/2⁺) interaction describing the $\Omega_c(3050)$ and $\Omega_c(3090)$.

$\overline{3054.05 + i0.44}$	$\Xi_c ar{K}$	$\Xi_c^\primear{K}$	ΞD	$\Omega_c\eta$
$g_i \\ g_i G_i^{II}$	-0.06 + i0.14 -1.40 - i3.85	$1.94 + i0.01 \\ -34.41 - i0.30$	-2.14 + i0.26 9.33 - i1.10	$\frac{1.98 + i0.01}{-16.81 - i0.11}$
$\overline{3091.28 + i5.12}$	$\Xi_c ar{K}$	$\Xi_c'ar{K}$	ΞD	$\Omega_c\eta$
$\frac{g_i}{g_i G_i^{II}}$	0.18 - i0.37 5.05 + i10.19	0.31 + i0.25 -9.97 - i3.67	5.83 - i0.20 -29.82 + i0.31	$0.38 + i0.23 \\ -3.59 - i2.23$

Pole position [MeV], couplings g_i [dimensionless], and wave functions at the origin $g_i G_i^{II}$ [MeV] from pseudoscalar(0⁻)-baryon(1/2⁺) interaction describing the $\Omega_c(3050)$ and $\Omega_c(3090)$.

$\overline{3054.05 + i0.44}$	$\Xi_c ar{K}$	$\Xi_c'ar{K}$	ΞD	$\Omega_c\eta$
$g_i \\ g_i G_i^{II}$	-0.06 + i0.14 -1.40 - i3.85	1.94 + i0.01 -34.41 - i0.30	-2.14 + i0.26 9.33 - i1.10	$\frac{1.98 + i0.01}{-16.81 - i0.11}$
3091.28 + <i>i</i> 5.12	$\Xi_c ar{K}$	$\Xi_c'ar{K}$	ΞD	$\Omega_c\eta$
$egin{array}{c} g_i \ g_i G_i^{II} \end{array}$	0.18 - i0.37 5.05 + i10.19	0.31 + i0.25 -9.97 - i3.67	5.83 - i0.20 -29.82 + i0.31	0.38 + i0.23 -3.59 - i2.23

Phys. Rev. D 97, 094035 (2018)

Summary and conclusions

Part I

We have used a meson-baryon description in coupled channels to investigate possibly new doubly charmed baryons, Ξ_{cc} states;

The interaction goes through the exchange of a vector meson, and is evaluated using the Lagrangians from the Hidden gauge symmetry approach;

We have obtained 10 doubly-charmed resonances/bound states dynamically generated.

Part II

Signals for both singly-charmed baryons $\Omega_c(3050)$ and $\Omega_c(3090)$ states can be seen in the $\Xi_c \overline{K}$ invariant mass distribution in the $\Omega_b \to \Xi_c \overline{K}$ weak decay;

Predictions that could be confronted with future experiments were presented, and could help to determine the quantum numbers and nature of theses states;

Thank you for your altention!!