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similar to the Ξ0
c − Ξ!

c mass splitting, as done in Ref. [42].
The estimates for the Ωcc and Ω!

cc masses are also taken as
the same adopted in Ref. [42], given in Ref. [45]. The other
masses are taken as isospin averages of the ones listed by
the Particle Data Group [46]. In Tables I–IV we show the
channels and their respective thresholds reevaluated tak-
ing MΞcc

¼ 3621 MeV.
Next, wewill discuss the use of Lagrangians from hidden

local gauge symmetry which provide an easy manner to
evaluate the meson-baryon interaction involving the chan-
nels listed in Tables I–IV.

A. Transition amplitudes

The use of chiral Lagrangians to calculate the transition
amplitudes is complicated when states in the charm sector
are involved. This happens because one needs to extend
those Lagrangians from SUð3Þ to SUð4Þ and the use of this
latter symmetry must be handled with care when dealing
with mesons and baryons with such disparate masses. On
the other hand, the use of the Lagrangians coming from the
hidden local gauge symmetry allows us to make use of the
SUð3Þ content of SUð4Þ since the heavy quark is treated as
a spectator in our formalism. As a consequence the rules
of heavy quark spin symmetry are fulfilled [47] for the
dominant diagonal interactions.

In the hidden local gauge approach in SUð3Þ, the meson-
baryon interaction proceeds by means of vector meson
exchange as illustrated in Fig. 1. According to the hidden
local gauge approach, the vector-pseudoscalar-pseudoscalar
coupling (VPP), i.e., the upper vertex of the diagram
depicted in Fig. 1 is described by the following Lagrangian

LVPP ¼ −igh½ϕ; ∂μϕ&Vμi; ð1Þ

where ϕ and Vμ are the SUð3Þ matrices for pseudoscalar
and vector mesons, respectively, given by

ϕ ¼

0
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1ffiffi
2
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1

CCA; ð2Þ
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ρ0ffiffi
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p þ ωffiffi
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p ρþ K!þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K!0

K!− K̄!0 ϕ

1

CCA

μ

; ð3Þ

while the symbol h( ( (i in Eq. (1) stands for the SUð3Þ trace
and the coupling g ¼ MV=2fπ, with fπ ¼ 93 MeV being
the pion decay constant. The extension of Eq. (1) to SUð4Þ is
straightforward and the discussion on how to do this can be
found in Refs. [36,37]. Essentially the Lagrangian for VPP
is formally the same as for Eq. (1) but the ϕ and V matrices
are extended to their corresponding ones in SUð4Þ, which
account for qq̄ written in terms of pseudoscalar-mesons
or vector-mesons. Given this quark correspondence of the
mesons, it is possible to write the VPP vertex using an
appropriate quark operator and evaluating matrix elements
for the different mesons (see Eqs. (4)–(11) of Ref. [48]). One
finds identical results with the two methods within SUð3Þ.
When we move to the SUð4Þ sector we stick to the
prescription of using exchange of vector mesons for the
interaction, but there are two possibilities, the exchange of
light vectors (ρ, ω, ϕ) or the exchange of heavy vectors, D!,
D!

s and J=ψ . The exchange of heavy vectors is penalized

TABLE I. Baryon-pseudoscalar states (JP ¼ 1=2−) chosen and
threshold mass in MeV.

Channel Ξccπ ΛcD Ξccη ΩccK ΣcD ΞcDs Ξ0
cDs

Threshold 3759 4154 4169 4208 4321 4438 4545

TABLE II. Baryon-pseudoscalar states (JP ¼ 3=2−) chosen
and threshold mass in MeV.

Channel Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

Threshold 3840 4250 4291 4385 4615

TABLE III. Baryon-vector meson states (JP ¼ 1=2−; 3=2−)
chosen and threshold mass in MeV.

Channel ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

Threshold 4295 4397 4404 4462 4582 4606 4641 4689

TABLE IV. Baryon-vector meson states (JP ¼ 1=2−; 3=2−;
5=2−) chosen and threshold mass in MeV.

Channel Ξ!
ccρ Ξ!

ccω Σ!
cD! Ω!

ccK! Ξ!
ccϕ Ξ!

cD!
s

Threshold 4478 4485 4526 4689 4722 4759

FIG. 1. Diagram representing the meson-baryon interaction
through vector meson exchange. MiðMfÞ and BiðBfÞ are the
initial (final) meson and baryon states, respectively, taking
place on the interaction, while V stands for the vector meson
exchanged.
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Charm = 2,  
Strangeness =0, 
and Isospin =1/2 
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  Results for meson-baryon for J=1/2

to obtain the T-matrix in the complex energy plane, for
which we have calculated the meson-baryon G function in
the first (I) and second (II) Riemann sheet [56]. This is done
by changing G in Eq. (14) to GII in order to obtain TII. The
loop GII is the analytic continuation of the loop function in
the second Riemann sheet, and it is given by

GII
l ð

ffiffiffi
s

p
Þ ¼ GI

lð
ffiffiffi
s

p
Þ þ i

Ml

2π
ffiffiffi
s

p p; with ImðpÞ > 0;

p ¼ λ1=2ðs;m2
l ;M

2
l Þ

2
ffiffiffi
s

p ; ð16Þ

with ml and Ml being the meson and baryon masses of the
l-channel, respectively, while GI [given by Eq. (15)] and
GII

l stand for the loop function in the first and second
Riemann sheet, respectively. In Eq. (16), we use GII

l
when the lth-channel is open, i.e., Reð

ffiffiffi
s

p
Þ > ml þMl.

On the other hand, when the channel is closed, that is
Reð

ffiffiffi
s

p
Þ < ml þMl, we have GII

l ¼ GI
l.

It is also possible to evaluate the couplings gl of the state
to the different meson-baryon channels. In order to do this,
note that close to the pole the amplitude in the complex
plane for a diagonal transition can be written as

TllðsÞ ≈
g2lffiffiffi
s

p
− zR

; ð17Þ

where zR ¼ MR þ iΓR=2 stands for the position of the
bound state/resonance [61]. Hence, the coupling can be
evaluated as the residue at the pole of TllðsÞ, by means of
the following formula

g2l ¼
r
2π

Z
2π

0
TllðzðθÞÞeiθdθ; ð18Þ

where z ¼ zR þ reiθ.
In addition, with the coupling constant and the G

function calculated at the pole, we can obtain glGlðzRÞ,
which is proportional to the wave function at the origin in
the lth-channel [62].

III. RESULTS

In Table XI we show the poles we have found according
to the procedure discussed previously. They are related to
the interaction involving a pseudoscalar meson and 1=2þ

baryon in S-wave, such that for this case we have poles
associated to theJP ¼ 1=2− quantum numbers. In addition,
we also show the couplings of these states to the channels
spanning the space of states listed in Table I as well as the
product glGII

l , with GII
l being the loop function evaluated

at the pole in the second Riemann sheet. We get a broad
pole below 4 GeV, with mass 3837.26 MeV and width
200.96 MeV (ΓR ¼ 2 × ImðzRÞ), coupling to Ξccπ, Ξccη
and ΩccK. As we can see from the value of the coupling gl
and wavefunction glGII

l this pole is dominated by the
channel Ξccπ. The large width comes from the fact that this
resonance is 78 MeV above the Ξccπ threshold and has a
very large contribution from this channel, which is open for
decay. We get two states above 4 GeV separated approx-
imately by ≈10 MeV, with one at 4082.79 MeV and the
other at 4092.20 MeV. From the results obtained for the
couplings as well as for the wave function at the origin, we
observe that the first pole couples strongly to the ΣcD
channel. It also couples to Ξ0

cDs, but with a smaller value
than to the former channel. We can understand this by
looking at Table VII. According to that table only the
ΣcD → ΣcD and ΣcD → Ξ0

cDs transitions are allowed,
with the coefficient related to the diagonal one as the
biggest value. Therefore, we can say that this pole is mostly
a ΣcD molecule. For the second pole, at 4092.20 MeV, we
see that it couples to both ΛcD and ΞcDs channels with
almost the same magnitude. The only open channel for both
states found is Ξccπ, but as can be seen from Table XI, they
do not couple to this channel.
The results associated with the interaction involving a

pseudoscalar meson and a baryon with JP ¼ 3=2þ in S-
wave, are displayed in Table XII. Analogously to the
previous case, we also present the couplings together with
the wave function at the origin, that is the glGII

l product.
Similar to the previous case, we now find a broad pole
below 4 GeV coupling strongly to Ξ%

ccπ, at 3918.15 MeV

TABLE XI. Poles and couplings in the PB1=2, JP ¼ 1=2− sector, with qmax ¼ 650 MeV, and glGII
l in MeV.

3837.26þ i100.48 Ξccπ ΛcD Ξccη ΩccK ΣcD ΞcDs Ξ0
cDs

gl 1.72þ i1.30 0 0.41þ i0.32 0.80þ i0.77 0 0 0
glGII

l −74.27 − i12.89 0 −2.11 − i2.41 −4.03 − i5.35 0 0 0

4082.79 Ξccπ ΛcD Ξccη ΩccK ΣcD ΞcDs Ξ0
cDs

gl 0 0 0 0 8.86 0 1.93
glGII

l 0 0 0 0 −31.29 0 −4.04
4092.20 Ξccπ ΛcD Ξccη ΩccK ΣcD ΞcDs Ξ0

cDs

gl 0 4.01 0 0 0 3.75 0
glGII

l 0 −29.49 0 0 0 −9.76 0
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We get three states:
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with a width of 200.64 MeV. This pole is also 78 MeV
above the corresponding threshold of the Ξ!

ccπ channel,
which is open for decay, explaining the similar width of
200 MeV. In this case, we have just one pole above 4 GeV
at 4149.67 MeV, coupling mostly to Σ!

cD and with less
intensity to the Ξ!

cDs channel. As can be seen looking at the
Table III for the thresholds, only the Ξ!

ccπ channel is open.
The coupling to Σ!

cD is almost seven times bigger than the
value for the other channel, Ξ!

cDs, then this pole is naturally
associated with a Σ!

cD molecule. This pole would be the
spin partner of the pole found at 4082.79 MeV from the
pseudoscalar-baryon (PB) interaction, with JP ¼ 1=2−.
Next we look for the states with degenerate JP ¼

1=2−; 3=2−, resulting from the interaction in S-wave of
vector mesons and baryons with JP ¼ 1=2þ. Our findings
for this particular case can be seen in Table XIII. Three
states have been found, at 4217.21 MeV, 4229.19 MeV, and
at 4293.12 MeV. The first of them couples strongly to ΣcD!

and little to the Ξ0
cD!

s channel, and hence, this pole qualifies
as a ΣcD! bound state. The second state found, at
4229.19 MeV, couples to both ΛcD! and ΞcD!

s with similar
values for the couplings, however, when we compare the
values for the product glGII

l , we see that the one for the
ΛcD! channel is much bigger than that for ΞcD!

s. The same
behavior is found for the last pole, at 4293.12 MeV, whose
couplings to Ξccρ and toΩccK! are of the same order, while
the value for the wave function at the origin for the former
channel is bigger than that for the latter one. It is worth
mentioning that three states were also obtained in the same
VB1=2, JP ¼ 1=2−; 3=2− sector for the Ωc and Ωb states,

r-

espectively, studied in Refs. [40,44]. We note that for
the first and second poles at 4217.21 and 4229.19 MeV,
all channels are closed for decay. The third pole at
4293.12 MeV has about 30 MeV of phase space to decay
into ΛcD!, however in our approach it does not couple to
this channel since it would require the exchange of a heavy
vector meson.
Finally we also show in Table XIV the results for the

vector meson-baryon states, with JP ¼ 3=2þ for the baryon.
In this case, we obtain two poles: 4280.43 and 4374.00MeV.
The first one couples strongly to Σ!

cD! and since its coupling
to the other channel, Ξ!

cD!
s , is four times smaller than the first

one, this pole is likely a Σ!
cD! molecule. On the other hand,

the second pole couples almost to all channels, except for
the Σ!

cD! and Ξ!
cD!

s . It couples with similar values for the
coupling to the channels: Ξ!

ccρ andΩ!
ccK!; and next to Ξ!

ccω,
and a little to Ξ!

ccϕ. But, by looking at the wave function at
the origin we conclude that this last pole comes mostly from
the Ξ!

ccρ channel.
Evidence of three resonances at higher energies has also

been found. In the B1=2P sector a state coupling mostly to
Ξ0
cDs was found around 4520 MeV. This state also couples

to ΣcD, and would be the “heavy partner” of the pole found
around 4080 MeV. However, the pole is close to the
threshold of Ξ0

cDs, which is about 200 MeV above the
one of ΣcD. At this energy the propagator of ΣcD is already
too far from its threshold and its real part becomes positive,
what can affect the unitarization of the amplitude and yield
unreliable results. The same happens in the B1=2P sector,
where a state coupling mostly to Ξ!

cDs, and also to Σ!
cD,

was found around 4575 MeV; and in the B1=2V sector,
where a state coupling mostly to Ξ0

cD!
s , and also to ΣcD!,

TABLE XIV. Poles and couplings in the VB3=2, JP ¼
1=2−; 3=2−; 5=2− sector, with qmax ¼ 650 MeV, and glGII

l in
MeV.

4280.43 Ξ!
ccρ Ξ!

ccω Σ!
cD! Ω!

ccK! Ξ!
ccϕ Ξ!

cD!
s

gl 0 0 9.31 0 0 2.03
glGII

l 0 0 −30.42 0 0 −3.90
4374.00 Ξ!

ccρ Ξ!
ccω Σ!

cD! Ω!
ccK! Ξ!

ccϕ Ξ!
cD!

s

gl 3.70 1.15 0 2.42 −0.44 0
glGII

l −37.53 −11.30 0 −12.35 1.94 0

TABLE XII. Poles and couplings in the PB3=2, JP ¼ 3=2− sector, with qmax ¼ 650 MeV, and glGII
l in MeV.

3918.15þ i100.32 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 1.72þ i1.30 0 0.41þ i0.32 0.80þ i0.76 0
glGII

l −74.27 − i12.91 0 −2.10 − i2.41 −3.99 − i5.30 0

4149.67 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 0 0 0 8.82 1.30
glGII

l 0 0 0 −31.46 −2.71

TABLE XIII. Poles and couplings in the VB1=2, JP ¼
1=2−; 3=2− sector, with qmax ¼ 650 MeV, and glGII

l in MeV.

4217.21 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 0 0 9.31 0 0 0 2.03
glGII

l 0 0 0 −30.40 0 0 0 −3.94
4229.19 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!

s ΩccK! Ξccϕ Ξ0
cD!

s

gl 4.21 0 0 0 3.98 0 0 0
glGII

l −28.70 0 0 0 −9.59 0 0 0

4293.12 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 3.71 1.16 0 0 2.42 −0.45 0
glGII

l 0 −37.49 −11.30 0 0 −12.42 1.96 0
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  Results for meson-baryon for J=3/2

Two states were obtained in this case:
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with a width of 200.64 MeV. This pole is also 78 MeV
above the corresponding threshold of the Ξ!

ccπ channel,
which is open for decay, explaining the similar width of
200 MeV. In this case, we have just one pole above 4 GeV
at 4149.67 MeV, coupling mostly to Σ!

cD and with less
intensity to the Ξ!

cDs channel. As can be seen looking at the
Table III for the thresholds, only the Ξ!

ccπ channel is open.
The coupling to Σ!

cD is almost seven times bigger than the
value for the other channel, Ξ!

cDs, then this pole is naturally
associated with a Σ!

cD molecule. This pole would be the
spin partner of the pole found at 4082.79 MeV from the
pseudoscalar-baryon (PB) interaction, with JP ¼ 1=2−.
Next we look for the states with degenerate JP ¼

1=2−; 3=2−, resulting from the interaction in S-wave of
vector mesons and baryons with JP ¼ 1=2þ. Our findings
for this particular case can be seen in Table XIII. Three
states have been found, at 4217.21 MeV, 4229.19 MeV, and
at 4293.12 MeV. The first of them couples strongly to ΣcD!

and little to the Ξ0
cD!

s channel, and hence, this pole qualifies
as a ΣcD! bound state. The second state found, at
4229.19 MeV, couples to both ΛcD! and ΞcD!

s with similar
values for the couplings, however, when we compare the
values for the product glGII

l , we see that the one for the
ΛcD! channel is much bigger than that for ΞcD!

s. The same
behavior is found for the last pole, at 4293.12 MeV, whose
couplings to Ξccρ and toΩccK! are of the same order, while
the value for the wave function at the origin for the former
channel is bigger than that for the latter one. It is worth
mentioning that three states were also obtained in the same
VB1=2, JP ¼ 1=2−; 3=2− sector for the Ωc and Ωb states,

r-

espectively, studied in Refs. [40,44]. We note that for
the first and second poles at 4217.21 and 4229.19 MeV,
all channels are closed for decay. The third pole at
4293.12 MeV has about 30 MeV of phase space to decay
into ΛcD!, however in our approach it does not couple to
this channel since it would require the exchange of a heavy
vector meson.
Finally we also show in Table XIV the results for the

vector meson-baryon states, with JP ¼ 3=2þ for the baryon.
In this case, we obtain two poles: 4280.43 and 4374.00MeV.
The first one couples strongly to Σ!

cD! and since its coupling
to the other channel, Ξ!

cD!
s , is four times smaller than the first

one, this pole is likely a Σ!
cD! molecule. On the other hand,

the second pole couples almost to all channels, except for
the Σ!

cD! and Ξ!
cD!

s . It couples with similar values for the
coupling to the channels: Ξ!

ccρ andΩ!
ccK!; and next to Ξ!

ccω,
and a little to Ξ!

ccϕ. But, by looking at the wave function at
the origin we conclude that this last pole comes mostly from
the Ξ!

ccρ channel.
Evidence of three resonances at higher energies has also

been found. In the B1=2P sector a state coupling mostly to
Ξ0
cDs was found around 4520 MeV. This state also couples

to ΣcD, and would be the “heavy partner” of the pole found
around 4080 MeV. However, the pole is close to the
threshold of Ξ0

cDs, which is about 200 MeV above the
one of ΣcD. At this energy the propagator of ΣcD is already
too far from its threshold and its real part becomes positive,
what can affect the unitarization of the amplitude and yield
unreliable results. The same happens in the B1=2P sector,
where a state coupling mostly to Ξ!

cDs, and also to Σ!
cD,

was found around 4575 MeV; and in the B1=2V sector,
where a state coupling mostly to Ξ0

cD!
s , and also to ΣcD!,

TABLE XIV. Poles and couplings in the VB3=2, JP ¼
1=2−; 3=2−; 5=2− sector, with qmax ¼ 650 MeV, and glGII

l in
MeV.

4280.43 Ξ!
ccρ Ξ!

ccω Σ!
cD! Ω!

ccK! Ξ!
ccϕ Ξ!

cD!
s

gl 0 0 9.31 0 0 2.03
glGII

l 0 0 −30.42 0 0 −3.90
4374.00 Ξ!

ccρ Ξ!
ccω Σ!

cD! Ω!
ccK! Ξ!

ccϕ Ξ!
cD!

s

gl 3.70 1.15 0 2.42 −0.44 0
glGII

l −37.53 −11.30 0 −12.35 1.94 0

TABLE XII. Poles and couplings in the PB3=2, JP ¼ 3=2− sector, with qmax ¼ 650 MeV, and glGII
l in MeV.

3918.15þ i100.32 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 1.72þ i1.30 0 0.41þ i0.32 0.80þ i0.76 0
glGII

l −74.27 − i12.91 0 −2.10 − i2.41 −3.99 − i5.30 0

4149.67 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 0 0 0 8.82 1.30
glGII

l 0 0 0 −31.46 −2.71

TABLE XIII. Poles and couplings in the VB1=2, JP ¼
1=2−; 3=2− sector, with qmax ¼ 650 MeV, and glGII

l in MeV.

4217.21 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 0 0 9.31 0 0 0 2.03
glGII

l 0 0 0 −30.40 0 0 0 −3.94
4229.19 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!

s ΩccK! Ξccϕ Ξ0
cD!

s

gl 4.21 0 0 0 3.98 0 0 0
glGII

l −28.70 0 0 0 −9.59 0 0 0

4293.12 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 3.71 1.16 0 0 2.42 −0.45 0
glGII

l 0 −37.49 −11.30 0 0 −12.42 1.96 0
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  Results for meson-baryon: 1/2 and 3/2

For vector mesons, we have a degenerate case: 
1/2 and 3/2: 4 bound states!
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  Results for meson-baryon: 1/2 and 3/2

For vector mesons and baryons with 3/2, we have:
1/2, 3/2 and 5/2: 2 bound states!

with a width of 200.64 MeV. This pole is also 78 MeV
above the corresponding threshold of the Ξ!

ccπ channel,
which is open for decay, explaining the similar width of
200 MeV. In this case, we have just one pole above 4 GeV
at 4149.67 MeV, coupling mostly to Σ!

cD and with less
intensity to the Ξ!

cDs channel. As can be seen looking at the
Table III for the thresholds, only the Ξ!

ccπ channel is open.
The coupling to Σ!

cD is almost seven times bigger than the
value for the other channel, Ξ!

cDs, then this pole is naturally
associated with a Σ!

cD molecule. This pole would be the
spin partner of the pole found at 4082.79 MeV from the
pseudoscalar-baryon (PB) interaction, with JP ¼ 1=2−.
Next we look for the states with degenerate JP ¼

1=2−; 3=2−, resulting from the interaction in S-wave of
vector mesons and baryons with JP ¼ 1=2þ. Our findings
for this particular case can be seen in Table XIII. Three
states have been found, at 4217.21 MeV, 4229.19 MeV, and
at 4293.12 MeV. The first of them couples strongly to ΣcD!

and little to the Ξ0
cD!

s channel, and hence, this pole qualifies
as a ΣcD! bound state. The second state found, at
4229.19 MeV, couples to both ΛcD! and ΞcD!

s with similar
values for the couplings, however, when we compare the
values for the product glGII

l , we see that the one for the
ΛcD! channel is much bigger than that for ΞcD!

s. The same
behavior is found for the last pole, at 4293.12 MeV, whose
couplings to Ξccρ and toΩccK! are of the same order, while
the value for the wave function at the origin for the former
channel is bigger than that for the latter one. It is worth
mentioning that three states were also obtained in the same
VB1=2, JP ¼ 1=2−; 3=2− sector for the Ωc and Ωb states,

r-

espectively, studied in Refs. [40,44]. We note that for
the first and second poles at 4217.21 and 4229.19 MeV,
all channels are closed for decay. The third pole at
4293.12 MeV has about 30 MeV of phase space to decay
into ΛcD!, however in our approach it does not couple to
this channel since it would require the exchange of a heavy
vector meson.
Finally we also show in Table XIV the results for the

vector meson-baryon states, with JP ¼ 3=2þ for the baryon.
In this case, we obtain two poles: 4280.43 and 4374.00MeV.
The first one couples strongly to Σ!

cD! and since its coupling
to the other channel, Ξ!

cD!
s , is four times smaller than the first

one, this pole is likely a Σ!
cD! molecule. On the other hand,

the second pole couples almost to all channels, except for
the Σ!

cD! and Ξ!
cD!

s . It couples with similar values for the
coupling to the channels: Ξ!

ccρ andΩ!
ccK!; and next to Ξ!

ccω,
and a little to Ξ!

ccϕ. But, by looking at the wave function at
the origin we conclude that this last pole comes mostly from
the Ξ!

ccρ channel.
Evidence of three resonances at higher energies has also

been found. In the B1=2P sector a state coupling mostly to
Ξ0
cDs was found around 4520 MeV. This state also couples

to ΣcD, and would be the “heavy partner” of the pole found
around 4080 MeV. However, the pole is close to the
threshold of Ξ0

cDs, which is about 200 MeV above the
one of ΣcD. At this energy the propagator of ΣcD is already
too far from its threshold and its real part becomes positive,
what can affect the unitarization of the amplitude and yield
unreliable results. The same happens in the B1=2P sector,
where a state coupling mostly to Ξ!

cDs, and also to Σ!
cD,

was found around 4575 MeV; and in the B1=2V sector,
where a state coupling mostly to Ξ0

cD!
s , and also to ΣcD!,

TABLE XIV. Poles and couplings in the VB3=2, JP ¼
1=2−; 3=2−; 5=2− sector, with qmax ¼ 650 MeV, and glGII

l in
MeV.

4280.43 Ξ!
ccρ Ξ!

ccω Σ!
cD! Ω!

ccK! Ξ!
ccϕ Ξ!

cD!
s

gl 0 0 9.31 0 0 2.03
glGII

l 0 0 −30.42 0 0 −3.90
4374.00 Ξ!

ccρ Ξ!
ccω Σ!

cD! Ω!
ccK! Ξ!

ccϕ Ξ!
cD!

s

gl 3.70 1.15 0 2.42 −0.44 0
glGII

l −37.53 −11.30 0 −12.35 1.94 0

TABLE XII. Poles and couplings in the PB3=2, JP ¼ 3=2− sector, with qmax ¼ 650 MeV, and glGII
l in MeV.

3918.15þ i100.32 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 1.72þ i1.30 0 0.41þ i0.32 0.80þ i0.76 0
glGII

l −74.27 − i12.91 0 −2.10 − i2.41 −3.99 − i5.30 0

4149.67 Ξ!
ccπ Ξ!

ccη Ω!
ccK Σ!

cD Ξ!
cDs

gl 0 0 0 8.82 1.30
glGII

l 0 0 0 −31.46 −2.71

TABLE XIII. Poles and couplings in the VB1=2, JP ¼
1=2−; 3=2− sector, with qmax ¼ 650 MeV, and glGII

l in MeV.

4217.21 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 0 0 9.31 0 0 0 2.03
glGII

l 0 0 0 −30.40 0 0 0 −3.94
4229.19 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!

s ΩccK! Ξccϕ Ξ0
cD!

s

gl 4.21 0 0 0 3.98 0 0 0
glGII

l −28.70 0 0 0 −9.59 0 0 0

4293.12 ΛcD! Ξccρ Ξccω ΣcD! ΞcD!
s ΩccK! Ξccϕ Ξ0

cD!
s

gl 0 3.71 1.16 0 0 2.42 −0.45 0
glGII

l 0 −37.49 −11.30 0 0 −12.42 1.96 0
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 Part II:   weak decay Ωb

How do we get it?

Ω−
b

Hadronized ūu + d̄d + s̄s

c

s

D0 , D+

Ξ0 , Ξ−
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 Part II:   weak decay Ωb

Phys. Rev. D 97, 094035 (2018)

Ωc(3050)

Ωc(3090)
Ωc(3090)
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 Part II:   weak decay Ωb

Phys. Rev. D 97, 094035 (2018)coalescence
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 Summary and conclusions

Part I

Part II

We have used a meson-baryon description in coupled channels to 
investigate possibly new doubly charmed baryons,   states;Ξcc

The interaction goes through the exchange of a vector meson, and is 
evaluated using the Lagrangians from the Hidden gauge symmetry 
approach;

We have obtained 10 doubly-charmed resonances/bound states 
dynamically generated.

Signals for both singly-charmed baryons  and   states can be 
seen in the   invariant mass distribution in the   weak decay;

Ωc(3050) Ωc(3090)
ΞcK̄ Ωb → ΞcK̄

Predictions that could be confronted with future experiments were 
presented, and could help to determine the quantum numbers and nature of 
theses states;



Thank you for your attention!!


