

Strong decays of pentaquark states in molecule scenario

XVIII International Conference on Hadron Spectroscopy and Structure

Yonghui Lin (林勇辉) Institute of Theoretical Physics, Chinese Academy of Sciences 20 August, 2019 Guilin, China

Based on Yonghui Lin, Bingsong Zou, arXiv:1908.05309

Motivation: LHCb Observables

States	Mass~(MeV)	Width (MeV)
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$

LHCb, PRL 122, 222001 (2019)

Motivation: LHCb Observables

Motivation: LHCb Observables

States	Mass~(MeV)	Width (MeV)
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8\pm2.7^{+3.7}_{-4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$

Inner structure? J^P?

LHCb, PRL 122, 222001 (2019)

Motivation: Predictions

- Many theoretical predictions for $\overline{D}^{(*)}\Sigma_c$ published before 2015, some in quantitative agreement with the newly LHCb data
 - J.-J. Wu et al, PRL 105, 232001 (2010)
 - W.-L. Wang *et al*, PRC 84, 015203 (2011)
 - Z.-C. Yang *et al*, CPC 36, 6 (2012)
 - J.-J. Wu *et al*, PRC 85, 044002 (2012)
 - M. Karliner et al, PRL 115, 122001 (2015)

Motivation: Predictions

- Many theoretical predictions for $\overline{D}^{(*)}\Sigma_c$ published before 2015, some in quantitative agreement with the newly LHCb data
 - J.-J. Wu et al, PRL 105, 232001 (2010)
 - W.-L. Wang *et al*, PRC 84, 015203 (2011)
 - Z.-C. Yang *et al*, CPC 36, 6 (2012)

J.-J. Wu *et al*, PRC 85, 044002 (2012)

• M. Karliner et al, PRL 115, 122001 (2015)

ΔE -binding energy

		PB System		VB System	
$J^p = \frac{1}{2}^-$	Λ	$M-i\Gamma/2$	ΔE	$M-i\Gamma/2$	ΔE
	650	$\Delta E(4312)$	=-5	.8 ^{+1.0} _{-6.8} Me	/ -
	800	-	-	4462.178 - 0.002i	0.002
	1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667
	1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092
	2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90
$J^p = \frac{3}{2}^-$	8				
	650	$\Delta E(4457)$	= 2	2.5 ^{+4.3} ₋₄₁ Me	V-
	800	-	-	4462.178 - 0.002i	0.002
	1200	-1	-	4459.507 - 0.420i	2.673
	1500	-	-	4454.057 - 1.681i	8.123
	2000	-	-	4438.039 - 7.268i	23.14

 $\Delta E(4440) = 19.5^{+4.9}_{-4.3} \text{ MeV}$

Motivation: S-Wave Molecule Assumption

Strong decays within the *S*-wave hadronic molecule scenarios, that is, $1/2^{-}-\overline{D}\Sigma_{c}$ for $P_{c}(4312)$, $1/2^{-}$ - or $3/2^{-}-\overline{D}^{*}\Sigma_{c}$ for $P_{c}(4440)$, $P_{c}(4457)$

Decay Mechanism of *P_c* **Molecules**

$\Sigma_c^+ \overline{D}^0 \qquad \Sigma_c^+ \overline{D}^{*0}$		-		
Jec /	Initial P_c	Components	Final states	Exchanged particles
2 1200 – C – data LHCb			$J/\psi N,\omega p, ho N$	D, D^*
⊕ 1000 — total fit ⊡ 1000 — background			$ar{D}^*\Lambda_c$	π, ho
	$P_{c}(4312)$	$\bar{D}\Sigma_c$	$ar{D}\Lambda_c$	ρ
			$\eta_c N$	D^*
			πN	D^*, Λ_c, Σ_c
			$ar{D}^*\Lambda_c,ar{D}\Lambda_c,ar{D}\Sigma_c^*,ar{D}\Sigma_c$	π, ho
$P_{c}(4312)^{+}$ $P_{c}(4440)^{+}$ $P_{c}(4457)^{+}$	$P_c(4440)$ $P_c(4457)$	$\bar{D}^*\Sigma_c$	$J/\psi N, \omega p, ho N, \eta N$	D^*, D
			πN	$D^*, D, \Lambda_c, \Sigma_c$
			$\chi_{c0}N$	D^*
$m_{J/\psi p}$ [MeV]			$ar{D}^*\Lambda_c$	π, ho
Scenario Molecule J^P B (MeV) M (MeV)			$ar{D}\Lambda_c,\ ar{D}\Sigma_c$	ρ
$A \qquad \underline{\bar{D}}\Sigma_{c} \qquad \frac{1}{2} 7.8 - 9.0 4311.8 - 4313.0$	$P_{-}(4376)$	$\bar{D}\Sigma_c^*$	$J/\psi N,\omega p, ho N$	D^*, D
A $\bar{D}\Sigma_c^*$ $\frac{3}{2}^-$ 8.3 - 9.2 4376.1 - 4377.0	1 2(1010)		$\eta_c N$	D^*
$A \overline{D^*\Sigma_c} \frac{1}{2}^- \text{Input} 4440.3$			πN	D^*, Λ_c, Σ_c
$A = \frac{\bar{D}^* \Sigma_c}{2} = \frac{3}{2}^-$ Input 4457.3			$\chi_{c0}N$	D
$A \qquad \bar{D}^* \Sigma_c^* \qquad \frac{1}{2}^- \ 25.7 - 26.5 \ 4500.2 - 4501.0$			$\left \bar{D}^* \Lambda_c, \bar{D} \Lambda_c, \bar{D} \Sigma_c^*, \bar{D} \Sigma_c, \bar{D} \Sigma_c^* \right $	π, ho
$A \qquad \bar{D}^* \Sigma_c^* \qquad \frac{3}{2}^- 15.9 - 16.1 \ 4510.6 - 4510.8$	$P_c(4500)$ $P_c(4511)$	<u></u> *ک*	$J/\psi N, \omega p, \rho N, \eta N$	D^*, D
$A \qquad D^* \Sigma_c^* \frac{3}{2} 3.2 - 3.5 4523.3 - 4523.6$	$P_c(4511)$ $P_c(4523)$	$D \ \Box_c$	πΝ	$D^*, D, \Lambda_c, \Sigma_c$
MZ. Liu <i>et al</i> , PRL 122. 242001 (2019)			$\chi_{c0}N$	D^*

Decay Mechanism of *P_c* **Molecules**

1 Two body trionals loop	Initial P_c Components		Final states Exchanged part	
			$J/\psi N, \omega p, \rho N$	D, D^*
decay			$ar{D}^*\Lambda_c$	π, ho
	$P_c(4312)$	$\bar{D}\Sigma_c$	$ar{D}\Lambda_c$	ρ
			$\eta_c N$	D^*
P_c			πN	D^*, Λ_c, Σ_c
\rightarrow			$\bar{D}^*\Lambda_c, \bar{D}\Lambda_c, \bar{D}\Sigma_c^*, \bar{D}\Sigma_c$	π, ho
	$P_{c}(4440)$	$\bar{D}^*\Sigma_{re}$	$J/\psi N, \omega p, \rho N, \eta N$	D^*, D
	$P_c(4457)$	$D \Delta c$	πN	$D^*, D, \Lambda_c, \Sigma_c$
			$\chi_{c0}N$	D^*
			$ar{D}^*\Lambda_c$	π, ho
			$\bar{D}\Lambda_c, \ \bar{D}\Sigma_c$	ρ
	$P_{2}(4376)$	$\bar{D}\Sigma^*_{-}$	$J/\psi N, \omega p, \rho N$	D^*, D
	1 2(1010)		$\eta_c N$	D^*
			πN	D^*, Λ_c, Σ_c
			$\chi_{c0}N$	D
			$\bar{D}^*\Lambda_c, \ \bar{D}\Lambda_c, \ \bar{D}\Sigma_c^*, \ \bar{D}\Sigma_c, \ \bar{D}\Sigma_c^*$	π, ho
	$P_c(4500) = P_c(4511)$	$\bar{D}^*\Sigma^*_*$	$J/\psi N, \omega p, \rho N, \eta N$	D^*, D
	$P_{c}(4523)$	C	πN	$D^*, D, \Lambda_c, \Sigma_c$
			$\chi_{c0}N$	D^*

Decay Mechanism of *P_c* **Molecules**

1 Two hady triangle loop	Initial P_c	Components	Final states	Exchanged particles
			$J/\psi N,\omega p, ho N$	D, D^*
decay			$\bar{D}^*\Lambda_c$	π, ρ
	$P_{c}(4312)$	$\bar{D}\Sigma_c$	$ar{D}\Lambda_c$	ρ
C2 $F1$			$\eta_c N$	D^*
P_c			πN	D^*, Λ_c, Σ_c
\longrightarrow \bullet EP			$\bar{D}^*\Lambda_c, \bar{D}\Lambda_c, \bar{D}\Sigma_c^*, \bar{D}\Sigma_c$	π, ho
	$P_{c}(4440)$	$\bar{D}^*\Sigma_{\alpha}$	$J/\psi N,~\omega p,~ ho N,~\eta N$	D^*, D
$C1 \longrightarrow F2$	$P_c(4457)$	$D \Delta c$	πN	$D^*, D, \Lambda_c, \Sigma_c$
			$\chi_{c0}N$	D^*
2. Three-body decay via			$ar{D}^*\Lambda_c$	π, ho
tree diagram			$\bar{D}\Lambda_c, \ \bar{D}\Sigma_c$	ρ
0	$P_{c}(4376)$	$\bar{D}\Sigma^*$	$J/\psi N,\omega p, ho N$	D^*, D
$\bar{D}^{(*)}$			$\eta_c N$	D^*
			πN	D^*, Λ_c, Σ_c
P_c			$\chi_{c0}N$	D
\rightarrow π			$\bar{D}^*\Lambda_c, \bar{D}\Lambda_c, \bar{D}\Sigma_c^*, \bar{D}\Sigma_c, \bar{D}\Sigma_c^*$	π, ho
	$ \begin{array}{l} P_c(4500) \\ P_c(4511) \\ P_c(4523) \end{array} $	$\bar{D}^*\Sigma^*_*$	$J/\psi N, \omega p, \rho N, \eta N$	D^*, D
		c	πN	$D^*, D, \Lambda_c, \Sigma_c$
$\sim \Lambda_c$			$\chi_{c0}N$	D^*

• The Lorentz covariant *L*-*S* scheme is used for the interactions of P_c to $\bar{D}^{(*)}\Sigma_c^{(*)}$ systems.

B.-S. Zou et al, PRC 67. 015204 (2003)

$$\begin{aligned} \mathcal{L}_{\bar{D}\Sigma_{c}P_{c}(1/2^{-})} &= g_{\bar{D}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c} P_{c} \bar{D}, \\ \mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(1/2^{-})} &= g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c} \gamma^{5} \tilde{\gamma}^{\mu} P_{c} \bar{D}_{\mu}^{*} \\ \mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(3/2^{-})} &= g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{3/2^{-}} \bar{\Sigma}_{c} P_{c\mu} \bar{D}^{*\mu}, \end{aligned}$$

 $\tilde{\gamma}^{\mu} \equiv \tilde{g}^{\mu\nu}\gamma_{\nu} = \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^{2}}\right)\gamma_{\nu},$ with *w* the

with p the momentum of P_c .

• The Lorentz covariant *L*-*S* scheme is used for the interactions of P_c to $\overline{D}^{(*)}\Sigma_c^{(*)}$ systems.

B.-S. Zou et al, PRC 67. 015204 (2003)

$$\mathcal{L}_{\bar{D}\Sigma_{c}P_{c}(1/2^{-})} = g_{\bar{D}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c}P_{c}\bar{D},$$

$$\mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(1/2^{-})} = g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c}\gamma^{5}\tilde{\gamma}^{\mu}P_{c}\bar{D}_{\mu}^{*}$$

$$\mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(3/2^{-})} = g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{3/2^{-}} \bar{\Sigma}_{c}P_{c\mu}\bar{D}^{*\mu},$$

 $\tilde{\gamma}^{\mu} \equiv \tilde{g}^{\mu\nu}\gamma_{\nu} = \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^{2}}\right)\gamma_{\nu},$ with *p* the

momentum of P_c .

- Compositeness conditions for $g_{ar{D}^{(*)}\Sigma_c^{(*)}P_c}$

$$1 - Z = \left. \frac{\partial E_T}{\partial \not p} \right|_{\not p = m_0} \qquad \xrightarrow{P_c} \underbrace{\longrightarrow}_{D^{(*)}} \underbrace{P_c}_{D^{(*)}}$$

• The Lorentz covariant *L*-*S* scheme is used for the interactions of P_c to $\overline{D}^{(*)}\Sigma_c^{(*)}$ systems.

B.-S. Zou et al, PRC 67. 015204 (2003)

$$\mathcal{L}_{\bar{D}\Sigma_{c}P_{c}(1/2^{-})} = g_{\bar{D}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c}P_{c}\bar{D},$$

$$\mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(1/2^{-})} = g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{1/2^{-}} \bar{\Sigma}_{c}\gamma^{5}\tilde{\gamma}^{\mu}P_{c}\bar{D}_{\mu}^{*}$$

$$\mathcal{L}_{\bar{D}^{*}\Sigma_{c}P_{c}(3/2^{-})} = g_{\bar{D}^{*}\Sigma_{c}P_{c}}^{3/2^{-}} \bar{\Sigma}_{c}P_{c\mu}\bar{D}^{*\mu},$$

$$\begin{split} \tilde{\gamma}^{\mu} &\equiv \tilde{g}^{\mu\nu}\gamma_{\nu} = \\ \left(g^{\mu\nu} - \frac{p^{\mu}p^{\nu}}{p^2}\right)\gamma_{\nu}, \\ \text{with } p \text{ the} \end{split}$$

momentum of P_c .

- Compositeness conditions for $g_{ar{D}^{(*)}\Sigma_c^{(*)}P_c}$

Working in the non-relativistic limit and expanding on the $\frac{\sqrt{2\mu E_B}}{\Lambda}$,

$$g_0 = \sqrt{\frac{8\sqrt{2}\sqrt{E_B}m_1m_2\pi}{(m_1m_2/(m_1+m_2))^{3/2}}}\sqrt{\frac{1}{\mathcal{M}_N F_T}}$$

 $F_T = \begin{cases} 1 & \text{for spin-1/2 molecule,} \\ 3/2 & \text{for spin-3/2 molecule,} \\ 5/3 & \text{for spin-5/2 molecule.} \end{cases}$

$$\mathcal{M}_{N} = \begin{cases} 2 m_{1} & \text{for spin-}1/2 \ \bar{D}\Sigma_{c} \text{ molecule,} \\ 6 m_{1} & \text{for spin-}1/2 \ \bar{D}^{*}\Sigma_{c} \text{ molecule,} \\ 4/3 m_{1} & \text{for spin-}3/2 \ \bar{D}\Sigma_{c}^{*} \text{ or } \bar{D}^{*}\Sigma_{c} \text{ molecule,} \\ 4 m_{1} & \text{for spin-}1/2 \ \bar{D}^{*}\Sigma_{c}^{*} \text{ molecule,} \\ 20/9 m_{1} & \text{for spin-}3/2 \ \bar{D}^{*}\Sigma_{c}^{*} \text{ molecule,} \\ 6/5 m_{1} & \text{for spin-}5/2 \ \bar{D}^{*}\Sigma_{c} \text{ molecule.} \end{cases}$$

- Difference among three strategies, g_{RT} , g_{NR} , g_0 , for the determinations of $g_{P_c}\bar{D}\Sigma_c$

Comparations of g_{RT} , g_{NR} , g_0

1. The larger difference comes with the lager binding energy. The same coupling $g_{P_c \bar{D}\Sigma_c}$ will be obtained in the zero-binding-energy limit.

$$2. \quad g_{RT} \geq g_{NR} \geq g_0.$$

3. g_{RT} and g_{NR} decrease with the increasing of Λ_0 .

Comparations of g_{RT} , g_{NR} , g_0

1. The larger difference comes with the lager binding energy. The same coupling $g_{P_c}\bar{D}\Sigma_c$ will be obtained in the zero-binding-energy limit.

$$2. \quad g_{RT} \geq g_{NR} \geq g_0.$$

- *3.* g_{RT} and g_{NR} decrease with the increasing of Λ_0 .
- g_{RT} is adopted for the these P_c molecules with the binding energy larger than 10 MeV.
- For $P_c(4312)$, $P_c(4457)$, $P_c(4376)$ and $P_c(4523)$ that have small binding energy, g_0 is used for simplicity.

- Conventional effective Lagrangians are adopted for the vertices in *t*-channel, e.g., \mathcal{L}_{VPP} , \mathcal{L}_{VVV} , \mathcal{L}_{BBP} ,...

• Conventional effective Lagrangians are adopted for the vertices in *t*-channel, e.g., \mathcal{L}_{VPP} , \mathcal{L}_{VVV} , \mathcal{L}_{BBP} ,...

- Effective coupling constants
 - Inferred from experimental decay widths, $g_{\pi\Sigma_c\Lambda_c}$, $g_{D^*D\pi}$,...
 - Heavy quark spin symmetry, such as $g_{\pi\Sigma_c\Sigma_c^*} = \frac{\sqrt{3}}{2}g_{\pi\Sigma_c\Sigma_c}$...
 - The simplest approximation that c = s, namely $g_{\pi \Sigma_c \Sigma_c} = g_{\pi \Sigma \Sigma}$, ...
 - SU(3) relations, like $g_{\pi\Sigma\Sigma} = g_{BBP} 2\alpha_{BBP}$, ...
 - Vector meson dominant (VMD) model is used for $g_{DD\rho}$, $g_{DD\omega}$

- Conventional effective Lagrangians are adopted for the vertices in *t*-channel, e.g., \mathcal{L}_{VPP} , \mathcal{L}_{VVV} , \mathcal{L}_{BBP} ,...

Effective coupling constants

$g_{\pi\Sigma_c\Sigma_c}$	$g_{DN\Sigma_c}$	$g_{DN\Lambda_c}$	$g_{ ho\Sigma_c\Sigma_c}$	$g_{ ho\Sigma_c\Lambda_c}$	$g_{D^*N\Sigma_c}$	$g_{D^*N\Lambda_c}$	$g_{D^*N\Sigma_c^*}$	$g_{DN\Sigma_c^*}$	$\substack{g_{D^*D^*\eta_c}\\(\text{GeV}^{-1})}$	$g_{D^*D\eta_c}$
10.8	2.7	14.03	7.48	0.56	4.2	6.19	8.44	6.2	3.52	6.82
$g_{\pi\Lambda_c\Sigma_c}$	$g_{\pi\Lambda_c\Sigma_c^*}$ (GeV ⁻¹)	$g_{D^*D\pi}$	$\begin{array}{c} g_{D^*D^*\pi} \\ (\text{GeV}^{-1}) \end{array}$	$_{({\rm GeV}^{-1})}^{g_{D^*D\rho}}$	$g_{D^*D^*\rho}$	$g_{DD ho}$	$_{({\rm GeV}^{-1})}^{g_{D^*D\omega}}$	$g_{D^*D^*\omega}$	$g_{DD\omega}$	$_{({\rm GeV}^{-1})}^{g_D*_{DJ/\psi}}$
19.31	7.46	6.0	6.2	2.51	2.52	2.52	2.83	2.84	2.84	7.94
$g_{D^*D^*J/\psi}$	$g_{DDJ/\psi}$	$g_{DD\chi_{c0}}$	$_{\rm (GeV^{-1})}^{g_{D^*D^*\chi_{c0}}}$							
7.44	7.44	32.24	11.57							

Form factors

$$f_2(\boldsymbol{p}^2/\Lambda_0^2) = \exp(-\boldsymbol{p}^2/\Lambda_0^2),$$

$$p_E \equiv \frac{m_1}{m_1 + m_2} p_2 - \frac{m_2}{m_1 + m_2} p_1 = (p_2^0 - \frac{m_2}{m_1 + m_2} M, \boldsymbol{p}), \ p_E^2 = (p_E^0)^2 + \boldsymbol{p}^2$$

multipolar regulators

$$f_3(q^2) = \frac{\Lambda_1^4}{(m^2 - q^2)^2 + \Lambda_1^4},$$

 (f_1, f_3) for RT, (f_2, f_3) for NR

 $f_1(p_E^2/\Lambda_0^2) = \exp(-p_E^2/\Lambda_0^2),$

Decay pattern of $\overline{D}^{(*)}\Sigma_c$ molecules

- The numerical results on partial decay widths with $\Lambda_0=1.0~\text{GeV}$ and $\Lambda_1=0.6~\text{GeV}.$

	Widths (MeV) with (f_1, f_3)			Widths (MeV) with (f_1, f_3)				Widths	(Me	V) wit	h (f_2	$, f_{3})$
Mode	$\bar{D}\Sigma_c$		\bar{D}^*	Σ_c			Mode	$\bar{D}\Sigma_c$		\bar{D}^*	Σ_c	
	$P_{c}(4312)$	$P_c(4$	440)	$P_c(4$	457)			$P_{c}(4312)$	$P_c(4$	4440)	$P_c(\cdot$	4457)
	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$			$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$
$\bar{D}^* \Lambda_c$	3.8	13.9	6.2	12.5	6.1		$\bar{D}^* \Lambda_c$	10.7	12.5	6.8	10.8	6.9
$J/\psi p$	0.001	0.03	0.02	0.02	0.01		$J/\psi p$	0.1	0.6	1.8	0.2	0.6
$\bar{D}\Lambda_c$	0.06	5.6	1.7	3.8	1.5		$\bar{D}\Lambda_c$	0.3	2.7	1.2	2.0	1.2
πN	0.004	0.002	~ 0	0.001	~ 0		πN	1.7	0.2	1.9	0.07	0.6
$\chi_{c0} p$	-	~ 0	~ 0	~ 0	~ 0		$\chi_{c0} p$	-	0.1	0.009	0.05	0.003
$\eta_c p$	0.01	~ 0	~ 0	~ 0	~ 0		$\eta_c p$	0.4	0.07	0.008	0.02	0.003
ρN	~ 0	~ 0	~ 0	~ 0	~ 0		ρN	0.0008	0.4	0.3	0.1	0.1
ωp	~ 0	0.001	~ 0	~ 0	~ 0		ωp	0.003	1.5	1.2	0.5	0.4
$\bar{D}\Sigma_c$	-	3.4	0.5	2.6	1.0		$\bar{D}\Sigma_c$	-	3.4	0.6	2.8	0.9
$\bar{D}\Sigma_c^*$	-	0.8	5.4	1.9	6.2		$\bar{D}\Sigma_c^*$	-	0.9	7.3	2.3	7.2
Total	3.9	23.7	13.9	20.7	14.7		Total	13.2	22.4	21.0	18.8	17.9

States	Width (MeV)
$P_c(4312)^+$	$2.6\sim9.8\sim16.2$
$P_c(4440)^+$	$5.6\sim 20.6\sim 34.2$
$P_c(4457)^+$	$2.5 \sim 6.4 \sim 14.1$

Model-dependent upper limits at 90% CL (assuming JP=3/2-):

- Br(P_c(4312) → J/ψ p) < 4.6%
- $Br(P_c(4440) \rightarrow J/\psi p) < 2.3\%$
- $Br(P_c(4457) \rightarrow J/\psi p) < 3.8\%$

 $\psi_{\psi p}/\Gamma_{\eta_c p}$

 $\Gamma_{\overline{D}\Sigma_c}/\Gamma_{\overline{D}\Sigma_c^*}$

Decay pattern of $\overline{D}^{(*)}\Sigma_c^*$ molecules

• For $P_c(4376)$, $P_c(4500)$, $P_c(4511)$, $P_c(4523)$, partial widths with $\Lambda_0 = 1.0$ GeV and $\Lambda_1 = 0.6$ GeV.

	Wid	ths (MeV) with $(f_1$	$,f_{3})$
Mode	$\bar{D}\Sigma_c^*$		$\bar{D}^* \Sigma_c^*$	
	$P_{c}(4376)$	$P_{c}(4500)$	$P_{c}(4511)$	$P_{c}(4523)$
	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{5}{2}$ -
$\bar{D}^*\Lambda_c$	12.4	7.1	17.0	4.5
$J/\psi p$	0.01	0.006	0.02	0.006
$\bar{D}\Lambda_c$	~ 0	10.0	0.3	1.5
πN	~ 0	0.003	~ 0	~ 0
$\chi_{c0} p$	0.003	0.01	0.002	~ 0
$\eta_c p$	0.001	0.01	~ 0	~ 0
ρN	~ 0	0.001	0.01	~ 0
ωp	0.002	0.004	0.005	~ 0
$\bar{D}\Sigma_c$	~ 0	10.6	0.2	1.3
$\bar{D}\Sigma_c^*$	-	1.0	33.8	6.2
$\bar{D}^*\Sigma_c$	-	10.6	0.07	1.2
$\bar{D}\Lambda_c\pi$	5.0	-	-	-
$\bar{D}^* \Lambda_c \pi$	-	4.0	7.7	7.8
Total	17.5	43.3	59.1	22.5

	Wid	ths (MeV) with $(f_2$	$,f_{3})$
Mode	$\bar{D}\Sigma_c^*$		$\bar{D}^* \Sigma_c^*$	
	$P_{c}(4376)$	$P_{c}(4500)$	$P_{c}(4511)$	$P_{c}(4523)$
	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$
$\bar{D}^* \Lambda_c$	21.6	6.4	16.7	3.1
$J/\psi p$	0.7	36.7	4.4	0.2
$\bar{D}\Lambda_c$	~ 0	2.0	0.09	0.7
πN	0.6	49.9	6.0	0.5
$\chi_{c0} p$	0.1	4.7	0.5	~ 0
$\eta_c p$	~ 0	13.5	0.1	0.04
ρN	0.2	11.6	0.6	0.1
ωp	0.8	44.0	2.3	0.4
$\bar{D}\Sigma_c$	~ 0	6.7	0.2	1.0
$\bar{D}\Sigma_c^*$	-	1.2	35.0	4.1
$\bar{D}^*\Sigma_c$	-	13.6	0.08	0.7
$\bar{D}\Lambda_c\pi$	5.0	-	-	-
$\bar{D}^* \Lambda_c \pi$	-	4.0	7.7	7.8
Total	29.0	194.5	73.7	18.7

Summary

- The experimental data on $P_c(4312)$, $P_c(4440)$, $P_c(4457)$ can be described well with the $1/2^{-}-\overline{D}\Sigma_c$, $1/2^{-}-\overline{D}^*\Sigma_c$, $3/2^{-}-\overline{D}^*\Sigma_c$ hadronic molecule scenarios, respectively.
- The determination of the spin parities for two higher P_c states requires further experimental investigation, especially on the decay behaviors, such as $\Gamma_{\overline{D}\Sigma_c}/\Gamma_{\overline{D}\Sigma_c^*}$, $\Gamma_{J/\psi p}/\Gamma_{\eta_c p}$.
- Four additional heavy quark spin partners ($\Gamma \sim 20-60$ MeV) that strongly couple to $\overline{D}^*\Lambda_c$, $\overline{D}\Lambda_c$, $\overline{D}\Sigma_c$, $\overline{D}\Sigma_c^*$, $\overline{D}^*\Sigma_c$ channels are expected to be confirmed in the future.

Thank you!

Back up slides

Cut-off dependence P_c(4312)

• The total widths and branching fractions of $\overline{D}^*\Lambda_c$, $J/\psi p$, $\overline{D}\Lambda_c$

P_c(4440)

