

Curious Link of Exclusive & Inclusive CPV in Charmless 3-body B⁺ Decays

George W.S. Hou (侯維恕) National Taiwan University 17 August 2019, Hadron 2019, Guilin, China

Curious Link of Exclusive & Inclusive CPV in Charmless 3-body B⁺ Decays

I. The Striking Plot, and a Curiosity

LHCb 1408.5373 (PRD)

II. FSI: elastic vs inelastic

III. FSI: soft vs hard

- CPT and inelastic hadron scattering
- a Critique

IV. Unitarity/CPT at Quark Level: a 30-yr "Sum Rule"

V. Conclusion

Gérard and WSH, PRL'89 PRD'91

The Striking Plot, and a Curiosity

Bander, Silverman, Soni, PRL'79

PHYSICAL REVIEW D 90, 112004 (2014)

Measurements of CP violation in the three-body phase space of charmless B^{\pm} decays

LHCb 1408.5373 (PRD)

R. Aaij *et al.**

(LHCb Collaboration)
(Received 25 August 2014; published 11 December 2014)

The charmless three-body decay modes $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$, $B^{\pm} \to K^{\pm}K^{+}K^{-}$, $B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ and $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb⁻¹, collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be

$$\begin{split} A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) &= +0.025 \pm 0.004 \pm 0.004 \pm 0.007, \\ A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) &= -0.036 \pm 0.004 \pm 0.002 \pm 0.007, \\ A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) &= +0.058 \pm 0.008 \pm 0.009 \pm 0.007, \\ A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) &= -0.123 \pm 0.017 \pm 0.012 \pm 0.007, \end{split}$$

where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the <u>Dalitz plot</u> and suggest contributions from <u>rescattering</u> and <u>resonance interference</u>

deorge W.S. Hou (WTO)

 $m^2(K^+K^-)$ [GeV²/c⁴]

 $m^2(\pi^+\pi^-)_{low} [\text{GeV}^2/c^4]$

incl. DCPV

парRON, Guilin 190817 4

LHCb 1408.5373 (PRD)

PHYSICAL REVIEW D 90, 112004 (2014)

Measurements of *CP* violation in the three-body phase space of charmless B^{\pm} decays

R. Aaij et al.*

(LHCb Collaboration) (Received 25 August 2014; published 11 December 2014)

The charmless three-body decay modes $B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}$, $B^{\pm} \to K^{\pm} K^{+} K^{-}$, $B^{\pm} \to \pi^{\pm} K^{+} K^{-}$ and $B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb⁻¹, collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be

BR (10^{-5})

5.1
$$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007,$$
 $+ 2.7 \pm 0.8\%$ (PDG)
3.4 $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007,$ $- 3.3 \pm 0.8\%$
1.5 $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007,$ $+ 5.7 \pm 1.3\%$
0.5 $A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007,$ $-12.2 \pm 2.1\%$

where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the $B^{\pm} \to J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the Dalitz plot and suggest contributions from rescattering and resonance interference

0.3% (b \rightarrow s) 1.1% (b \rightarrow d) sub-percent

a Curiosity

-0.2

-0.4

-0.6

-0.8

 $m^2(\pi^+\pi^-)_{low} [\text{GeV}^2/c^4]$

strikingly large CPV

strong variations in DP

 πKK

-0.2

-0.4

-0.6

-0.8

Κππ

bins w/ same # evts

 $m^2(K^+K^-)$ [GeV²/c⁴]

dedige W.S. Hou (WIO)

5

парRON, Guilin 190817 6

incl. DCPV

181k

109k

25k

6k

PHYSICAL REVIEW D 90, 112004 (2014)

Measurements of CP violation in the three-body phase space of charmless B^{\pm} decays

LHCb 1408.5373 (PRD)

R. Aaij et al.*
(LHCb Collaboration)
(Received 25 August 2014; published 11 December 2014)

The charmless three-body decay modes $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}$, $B^{\pm} \to K^{\pm}K^{+}K^{-}$, $B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ and $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb⁻¹, collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be

Foliected by the LHCb detector. The inclusive
$$CP$$
 asymmetries of these modes are measured to be
$$5.1 \qquad A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007, \qquad + 2.7 \pm 0.8\%$$

$$3.4 \qquad A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007, \qquad - 3.3 \pm 0.8\%$$

$$1.5 \qquad A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007, \qquad + 5.7 \pm 1.3\%$$

$$0.5 \qquad A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007, \qquad -12.2 \pm 2.1\%$$

where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the Dalitz plot and suggest contributions from rescattering and resonance interference

a Curiosity

0.3% (b \rightarrow s)

sub-percent

 $\sim 0.12, 0.35$

 $BR (10^{-5})$

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for p = -0.5, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number.

	B (%)	<i>a</i> ₀ (%)	a (%)
$b \rightarrow su\overline{u}$	0.46	1.2	0.0
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2
$b \rightarrow du\bar{u}$	0.71	-0.7	-0.0
$b \rightarrow dd\bar{d} + ds\bar{s}$	0.07	-4.2	-4.2
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4

Gérard and WSH, PRD'91

II. FSI: elastic vs inelastic

Experiment-driven take on Final State Interactions

Observation of the Color-Suppressed Decay $\overline B{}^0 \to D^0 \pi^0$

Belle, PRL'02

	Signal Yield								Th $(\times 10^{-4})$
$D^0\pi^0$	$126.2 {}^{+16.1}_{-15.5} {}^{+7.2}_{-5.2}$	9.3	26.7	1.3	145.6	1.79	$3.1 \pm 0.4 \pm 0.5$	_	0.7
	$26.4 {}^{+7.7}_{-7.1} {}^{+1.6}_{-2.2}$							_	1.0
	$22.1 {}^{+7.0}_{-6.3} {}^{+2.0}_{-1.8}$							_	0.5
	$7.8 ^{+3.6}_{-3.0} \pm 0.7$						0.0	4.6	0.6
$D^0\omega$	$32.5^{\ +9.4}_{\ -8.6}^{\ +4.0}_{\ -3.1}$	4.4	$5.3(2.3)^{\dagger}$	1.4	58.5	0.80	$1.8 \pm 0.5 ^{+0.4}_{-0.3}$	_	0.7
$D^{*0}\omega$	$16.1 ^{+6.8}_{-6.0} \pm 2.4$	3.0	$5.3(1.5)^{\dagger}$	_	13.8	0.23	$3.1^{+1.3}_{-1.1} \pm 0.8$	7.9	1.7

Color-suppressed

PHYSICAL REVIEW D, VOLUME 65, 096007

Final state rescattering and color-suppressed $\bar{B}^0 \!\!\to\! D^{(\star)0} h^0$ decays

Chun-Khiang Chua* and Wei-Shu Hou Physics Department, National Taiwan University, Taipei, Taiwan 10764, Republic of China

Kwei-Chou Yang

Physics Department, Chung Yuan Christian University, Chung-Li, Taiwan 32023, Republic of China (Received 11 December 2001; published 7 May 2002)

The color-suppressed $B^0 \to D^{(*)0}\pi^0$, $D^{(*)0}\eta$, $D^0\omega$ decay modes have just been observed for the first time. The rates are all larger than expected, hinting at the presence of final state interactions. Considering the $\bar{B}^0 \to D^{(*)0}\pi^0$ mode alone, a clastic $D^{(*)}\pi \to D^{(*)}\pi$ rescattering phase difference $\delta \equiv \delta_{1/2} - \delta_{3/2} \sim 30^\circ$ would suffice, but the $\bar{B}^0 \to D^{(*)0}\eta$, $D^0\omega$ modes compel one to extend the elastic formalism to SU(3) symmetry. We

Experiment-driven take on Final State Interactions

Observation of the Color-Suppressed Decay $\overline{B}^0 \to D^0 \pi^0$

Belle, PRL'02

	Signal Yield						,	,	Th $(\times 10^{-4})$
	$126.2^{+16.1}_{-15.5}^{+7.2}_{-5.2}$							_	0.7
	$26.4 {}^{+7.7}_{-7.1} {}^{+1.6}_{-2.2}$							_	1.0
$D^0\eta^*$	$22.1 {}^{+7.0}_{-6.3} {}^{+2.0}_{-1.8}$	4.2	3.4	0.7	19.1	0.67	$1.4^{+0.5}_{-0.4}\pm0.3$	_	0.5
	$7.8 ^{+3.6}_{-3.0} \pm 0.7$						0.0	4.6	0.6
$D^0\omega$	$32.5 ^{\ +9.4}_{\ -8.6} ^{\ +4.0}_{\ -3.1}$	4.4	$5.3(2.3)^{\dagger}$	1.4	58.5	0.80	$1.8 \pm 0.5 ^{+0.4}_{-0.3}$	_	0.7
$D^{*0}\omega$	$16.1^{+6.8}_{-6.0} \pm 2.4$	3.0	$5.3(1.5)^{\dagger}$	_	13.8	0.23	$3.1 {}^{+1.3}_{-1.1} \pm 0.8$	7.9	1.7

Color-suppressed

PHYSICAL REVIEW D 71, 014030 (2005)

Final state interactions in hadronic B decays

Hai-Yang Cheng, 1 Chun-Khiang Chua, 1 and Amarjit Soni² ¹Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China ²Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 5 October 2004; published 26 January 2005)

There exist many experimental indications that final-state interactions (FSIs) may play a prominent role not only in charmful B decays but also in charmless B ones. We examine the final-state rescattering effects on the hadronic B decay rates and their impact on direct CP violation. The color-suppressed neutral modes such as $B^0 \to D^0 \pi^0$, $\pi^0 \pi^0$, $\rho^0 \pi^0$, $\rho^0 \pi^0$, $\kappa^0 \pi^0$ can be substantially enhanced by long-distance rescattering effects. The direct CP-violating partial rate asymmetries in charmless B decays to $\pi\pi/\pi K$ and $\rho\pi$ are significantly affected by final-state rescattering, and their signs are generally different from that predicted by the short-distance (SD) approach. For example, direct CP asymmetry in $B^0 \to \rho^0 \pi^0$ is increased to

- Meson loops: how does it work when far off-shell?
- Went on to Inelastic, for sake of "charmless" (e.g. $K\pi$)
 - → diagramatics is cherry-picking and arbitrary.

I'm not at all adverse to Final State Interactions

CLEO Era

- "Prospects for direct CP violation in exclusive and inclusive charmless B decays" He, WSH, Yang, PRL'98
- "Electroweak Penguins, FSI Phases, and CP Violation in $B \to K\pi$ Decays" Deshpande, He, WSH, Pakvasa, PRL'99
- "Possibility of Large Final State Interaction Phases in Light of $B \to K\pi$, $\pi\pi$ Decays" WSH, Yang, PRL'00

Observation of the Color-Suppressed Decay $\overline B{}^0 \to D^0 \pi^0$

Belle, PRL'02

PHYSICAL REVIEW D, VOLUME 65, 096007

Final state rescattering and color-suppressed $\bar{B}^0 \rightarrow D^{(\star)0} h^0$ decays

Chun-Khiang Chua* and Wei-Shu Hou Physics Department, National Taiwan University, Taipei, Taiwan 10764, Republic of China

Kwei-Chou Yang

Physics Department, Chung Yuan Christian University, Chung-Li, Taiwan 32023, Republic of China (Received 11 December 2001; published 7 May 2002)

The color-suppressed $B^0 \to D^{(*)0} \pi^0$, $D^{(*)0} \eta$, $D^0 \omega$ decay modes have just been observed for the first time. The rates are all larger than expected, hinting at the presence of final state interactions. Considering the \bar{B}^0 $\to D^{(*)0}\pi^0$ mode alone, an elastic $D^{(*)}\pi \to D^{(*)}\pi$ rescattering phase difference $\delta \equiv \delta_{1/2} - \delta_{3/2} \sim 30^\circ$ would suffice, but the $\bar{B}^0 \to D^{(*)0} \eta$, $D^0 \omega$ modes compel one to extend the elastic formalism to SU(3) symmetry. We

- "Indication for Large Rescatterings in Charmless Rare B Decays" Chua, WSH, Yang, MPLA'03 2004: DCPV in B Observed!

Belle* BaBar

III. FSI: soft vs hard

- CPT and inelastic hadron scattering
- Some Critique

"All the inelasticity of the $\pi\pi$ interaction goes into the KK channel"?

Not Quite.

 $\pi^+\pi^- \leftrightarrows K^+K^-$ rescattering? <u>CPT</u> symmetry imposes a constraint on particle/antiparticle partial widths: $\sum \Gamma_i(B \to f_i) = \sum \Gamma_i(\overline{B} \to \overline{f_i})$.

Strong phase difference would come from $\pi\pi \hookrightarrow KK$ rescattering.

A.C. dos Reis, for the LHCb collaboration - XIII Hadron Physics

Direct CP violation in charmless B^{\pm} three-body decays

Alberto dos Reis

@ Hadron 2015

10/27

$(1, 2.2) \text{ GeV}^2$

"All the inelasticity of the $\pi\pi$ interaction goes into the KK channel"?

Not Quite.

KKnπ thresholds n = 0, 1, 2, 3

 $\pi^+\pi^- \leftrightarrows K^+K^-$ rescattering? CPT symmetry imposes a constraint on particle/antiparticle partial widths: $\sum \Gamma_i(B \to f_i) = \sum \Gamma_i(\overline{B} \to \overline{f_i})$.

Strong phase difference would come from $\pi\pi \hookrightarrow KK$ rescattering.

A.C. dos Reis, for the LHCb collaboration - XIII Hadron Physics

Direct CP violation in charmless B^{\pm} three-body decays

Alberto dos Reis @ Hadron 2015

 $(1, 2.2) \text{ GeV}^2$

"All the <u>inelasticity</u> of the $\pi\pi$ interaction goes into the KK channel"?

Not Quite.

Similar effect in $B^{\pm} \to \pi^{\pm} h^+ h^-$ (more evident in $B^{\pm} \to \pi^{\pm} K^+ K^-$).

Alberto dos Reis @ Hadron 2015

Direct CP violation in charmless B^{\pm} three-body decays

 $(1, 2.2) \,\mathrm{GeV}^2$

"All the inelasticity of the $\pi\pi$ interaction goes into the KK channel"?

Not Quite.

Similar effect in $B^{\pm} \to \pi^{\pm} h^+ h^-$ (more evident in $B^{\pm} \to \pi^{\pm} K^+ K^-$).

Alberto dos Reis @ Hadron 2015

A.C. dos Reis, for the LHCb collaboration - XIII Hadron Physics

Direct CP violation in charmless B^{\pm} three-body decays

"soft": $K + n\pi \rightarrow K + n\pi$ rescattering

hard: $(D\overline{D} + X) \rightarrow \text{charmless rescattering}$ cc(bar) = annihilate

IV. Unitarity/CPT at Quark Level

a 30-yr "Sum Rule"

Gérard and WSH, PRL'89 PRD'91

Unitarity/CPT at Quark Level

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.5$, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number. $\sim 0.12, 0.35$

	B (%)	a_0 (%)	a (%)
$b \rightarrow su\overline{u}$	0.46	1.2	0.0
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2
$b \rightarrow du\overline{u}$	0.71	-0.7	-0.0
$b \rightarrow dd\overline{d} + ds\overline{s}$	0.07	-4.2	-4.2
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4

Unitarity/CPT at Quark Level

inclusive $b \rightarrow s/d$ CPV should vanish for 2mc > mb

FIG. 3. Amplitude squared term-by-term analysis for BSS mechanism: (a) tree-tree interference $(b \rightarrow su\bar{u})$; (b) tree-penguin interference $(b \rightarrow su\bar{u})$; (c) penguin-penguin interference $(b \rightarrow sq\bar{q})$; and (d) tree-double-penguin interference.

Gérard and WSH, PRD'91

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.5$, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number. $\sim 0.12, 0.35$

Total Land				
	B (%)	a ₀ (%)	a (%)	
$b \rightarrow su\overline{u}$	0.46	1.2	0.0	
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5	
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2	
$b \rightarrow du\overline{u}$	0.71	-0.7	-0.0	
$b \rightarrow dd\overline{d} + ds\overline{s}$	0.07	-4.2	-4.2	
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4	

incl. DCPV

George W

a 30-yr "Sum Rule"

inclusive b \rightarrow s/d CPV sub-%: 2m_c threshold-suppress

 $[b \to sgg \text{ absent}]$

Gérard and WSH, PRL'89

TABLE I. Inclusive branching ratios (BR) and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.6$, $\eta = 0.25$, and $m_t = 60$ GeV. a_0 is with Fig. 1 only, while a is the result with Fig. 2 taken into account.

	BR (%)	a ₀ (%)	a (%)
$b \rightarrow su\bar{u}$	0.53	1.8	-1.7
$b \rightarrow sd\bar{d} + ss\bar{s} + sgg$	1.44	0.8	0.8
Total $b \rightarrow s$ (no charm)	2.12	1.0	0.1
$b \rightarrow du\bar{u}$	1.23	-0.8	0.7
$b \rightarrow dd\bar{d} + ds\bar{s} + dgg$	0.19	-6.0	-6.0
Total $b \rightarrow d$ (no charm)	1.45	-1.5	-0.2

Gérard and WSH, PRD'91

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.5$, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number. $\sim 0.12, 0.35$

	B (%)	a ₀ (%)	a (%)
$b \rightarrow su\overline{u}$	0.46	1.2	0.0
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2
$b \rightarrow du\bar{u}$	0.71	-0.7	-0.0
$b \rightarrow dd\bar{d} + ds\bar{s}$	0.07	-4.2	-4.2
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4

LHCb 1408.5373 (PRD)

s ud(bar) u(bar)d

s us(bar) u(bar)s

d ud(bar) u(bar)d

d us(bar) u(bar)s

Pure Penguin DCPV picked up by LHCb measurement

PHYSICAL REVIEW D 90, 112004 (2014)

Measurements of CP violation in the three-body phase space of charmless B^{\pm} decays

R. Aaij *et al.**
(LHCb Collaboration)

(Received 25 August 2014; published 11 December 2014)

The charmless three-body decay modes $B^{\pm} \to K^{\pm}\pi^{\dagger}\pi^{-}$, $B^{\pm} \to K^{\pm}K^{+}K^{-}$, $B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ and $B^{\pm} \to \pi^{\pm}\pi^{\dagger}\pi^{-}$ are reconstructed using data, corresponding to an integrated luminosity of 3.0 fb⁻¹, collected by the LHCb detector. The inclusive CP asymmetries of these modes are measured to be

$$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007, \qquad + 2.7 \pm 0.8\%$$

$$A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007, \qquad - 3.3 \pm 0.8\%$$

$$A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007, \qquad + 5.7 \pm 1.3\%$$

$$A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007, \qquad -12.2 \pm 2.1\%$$
(PDG)

where the first uncertainty is statistical, the second systematic, and the third is due to the CP asymmetry of the $B^{\pm} \to J/\psi K^{\pm}$ reference mode. The distributions of these asymmetries are also studied as functions of position in the <u>Dalitz plot</u> and suggest contributions from <u>rescattering</u> and <u>resonance interference</u>

 $\begin{cases} & \underline{a \ Curiosity} \\ 0.3\% \ (b \rightarrow s) \\ & 1.1\% \ (b \rightarrow d) \\ & \underline{sub-percent} \end{cases}$

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.5$, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number.

	B (%)	a_0 (%)	a (%)
$b \rightarrow su\overline{u}$	0.46	1.2	0.0
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2
$b \rightarrow du\overline{u}$	0.71	-0.7	-0.0
$b \rightarrow dd\overline{d} + ds\overline{s}$	0.07	-4.2	-4.2
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4

Gérard and WSH, PRD'91

 $\sim 0.12, 0.35$

Improving the Inclusive DCPV Theory

Interested theorists can try (a bit muddied/complicated).

Greub and Linniger, PLB'00, PRD'01

WSH, NPB'88

- Need to consider $b \to sg$, known to be ~ 0.5% (b $\to sqq(bar) \sim 1\%$).
 - But "on-shell" gluon does not give much absorptive parts, how to incorporate?
 - In what part of "h'+h-h+" Dalitz Plot does $b \rightarrow sg$ interfere with $b \rightarrow sqq(bar)$?
- Near cancellation guaranteed by the strength of absorptive part of Penguin. Interesting to see experimental development and further affirmation.

TABLE I. (Semi-)inclusive branching ratio B and asymmetries for $b \rightarrow s$ and $b \rightarrow d$ processes for $\rho = -0.5$, $\eta = 0.15$, and $m_t = M_W$. a_0 is with Figs. 1(a) and 1(b) only, while a is the result with Fig. 1(c) taken into account. The entry "0.0" stands for a very small positive number.

	B (%)	a ₀ (%)	a (%)
$b \rightarrow su\overline{u}$	0.46	1.2	0.0
$b \rightarrow sd\overline{d} + ss\overline{s}$	0.54	0.5	0.5
Total $b \rightarrow s$ (no charm)	1.19	0.7	0.2
$b \rightarrow du \overline{u}$	0.71	-0.7	-0.0
$b \rightarrow dd\bar{d} + ds\bar{s}$	0.07	-4.2	-4.2
Total $b \rightarrow d$ (no charm)	0.80	-1.0	-0.4

Gérard and WSH, PRD'91

 $\sim 0.12, 0.35$

Conclusion

• From "CP violation in inclusive and exclusive charmless B decays"

sistently, we found the surprising result that $O(\alpha_s^2)$ contributions are as important as $O(\alpha_s)$ effects for individual semi-inclusive modes such as $b \rightarrow su\overline{u}$. These unexpected results were uncovered because we chose to study the rates and asymmetries of semi-inclusive charmless B decays, and we therefore had to pay better attention to general conditions such as unitarity and CPT.

The upshot of our results is that the *total* inclusive charmless $b \rightarrow s$ and $b \rightarrow d$ decay asymmetries are rather suppressed. Nature seems to prefer hiding away the effects of CP violation, by one form of cancellation or another. In our case it is indeed a subtle one. The situa-

- LHCb'14 Observation of $B^+ \rightarrow h'^+h^-h^+$ 3-body DCPV
 - Large CPV, strongly varying across Darlitz Plot
 - Inclusive CPV for $B^+ \to K^+h^-h^+$ and $B^+ \to \pi^+h^-h^+$ @ sub%
 - LHCb has affirmed 30-yr DCPV "Sum Rule" and affirmed quark-hadron duality in charmless 3-body B+ decay CPV

Gérard and WSH, PRD'91

