Hadronic charm decays at **Hest**

Pei-Rong Li(李培荣)

Lanzhou University

on behalf of BESIII collaboration

BESIII is at Institute of High Energy Physics(IHEP) in Beijing, China

Beijing Electron Positron Collider (BEPCII)

beam energy: 1.0 – 2.3 GeV

2004: start BEPCII upgrade 2008: test run of BEPCII 2009-now: BESIII data taking Achieved the design Luminosity in 2016: $L_{neak}=1.0 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

LINAC

BESIII

detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Data samples in this talk

The advantage of data at threshold:

Charmed hadrons can be fully reconstructed by hadronic decays with large Branching Fractions(BF).

Double Tag technique make one can access to absolute BFs and dynamics in the other side decays with clean background.

■Most systematic uncertainty in tag side are cancelled out.

XCSIII

Hadron2019, Guilin, China

A theory model: Diagrammatic Approach

All decays can be described in terms of six different quark diagrams

Most amplitude need to be determined by experiment!

 $D_s^+ \rightarrow p\overline{n}$ decay

-as a "smoking gun" for W annihilation process

The only kinematically allowed hadronic decay, involving baryons.
 Short-distance contribution(Chiral suppression) is expected to be small: BF~10⁻⁶

Long distance can enhance to ~10⁻³(C.H.Chen,et al. PLB663,326)

➢ First evidence was reported by CLEO with 13.0±3.6 events with BF=(1.30±0.36^{+0.12}_{-0.16})×10⁻³(PRL100,181802)

2019/8/17

$D_s^+ \rightarrow p\overline{n}$ decay -as a "smoking gun" for W annihilation process

Phys.Rev.D99, 031101 (2019)

DT: reconstruct all final states, except missed n

BESIII confirm it is indeed large: BF=(1.21±0.10±0.05)×10⁻³

The short distance dynamics is not the dominated mechanism.

Long distance hadronization process, driven by nonperturbative dynamic determines the underlying physics

 $D_s^+ \rightarrow \omega K^+, \omega \pi^+$

Based on the 4178 data

- > ωK^+ , CF : Has seen by CLEO (PRD80,051102) : BF = (2.1 \pm 0.9 \pm 0.1) \times 10⁻³.
- $\sim \omega \pi^+$, SCS: CLEO (PRD80,051102) set an UL = 2.4×10⁻³ @ 90% C.L.
- > Q. Qin et al. (PRD89, 054006) predicts (factorization)
- BF(ωK) ~ 0.6×10⁻³ (with Acp ~ -0.6×10⁻³) or it could become ~0.07×10⁻⁴ (with Acp ~ -2.3×10⁻³) if ρ-ω mixing is considered.
- ➤ DT method: Reconstruct the all final states. Cut on ΔM = M_{signal-side} - M_{tag-side} to select D_s → tag and the other Ds → ω (π/K). - Then project onto M_{πππ0}.

 $D_{\rm s}^+
ightarrow \omega K^+$, $\omega \pi^+$

Phys.Rev.D99, 091101(R) (2019)

> BF(Ds → $\omega\pi$) = (1.77±0.32±0.13)×10⁻³

- Consistent with CLEO's measurement, but more precise.
- \succ BF(Ds → ωK) = (0.87±0.24±0.08)×10⁻³
 - First evidence!
 - According to Qin et al., this implies Acp ~ -0.6×10⁻³. and negligible effect from ρ-ω mixing.

$D_s^+ \to K_S K^+ \text{ and } K_L K^+$

Phys.Rev.D99, 112005 (2019)

Based on the 4178 data

- > Amplitudes of CF $D_S^+ \to K^0 K^+$ and DCS $D_S^+ \to \overline{K}^0 K^+$ could interfere.
- Such interference effect could also lead to CPV : A_{cp}~ 10⁻³, predicted by D. Wang et al. (PRL 119, 181802(2017)).

> BF($D_S^+ \rightarrow K_S K^+$)=(1.425±0.038±0.031)%, consistent with world average.
> BF($D_S^+ \rightarrow K_L K^+$)=(1.485±0.039±0.046)%, first measurement.

Ks/K_L asymmetry,

 $\mathsf{R}=(\mathsf{B}(D_{s}^{+} \to K_{s}K^{+}) - B(D_{s}^{+} \to K_{L}K^{+}))/(\mathsf{B}(D_{s}^{+} \to K_{s}K^{+}) + B(D_{s}^{+} \to K_{L}K^{+})) = (-2.1 \pm 1.9 \pm 1.6)\%, \text{ consistent with zero}$

A_{cp}($D_S \rightarrow K_S K$)= (0.6±2.8±0.6)% and A_{cp}($D_S \rightarrow K_L K$)= (-1.1±2.6±0.6)%

 $D^+ \rightarrow K_S K^+(\pi^0)$ and $K_L K^+(\pi^0)$

Phys.Rev.D99, 032002 (2019)

Based on the 3773 data

- > Also looks like similar process, but in D+ decays.
- \succ An additional π^0 processes are also studied.
- > For 3-body decay, MC was tuned based on D-KK π by CLEO:PRD78,072003(2008).

$$D^{+(0)}
ightarrow \phi \pi^{+(0)}$$
, $D^0
ightarrow \phi \eta$, $D^+
ightarrow \phi K^+$

PLB submitted, arXiv:1907.11258

Based on the 3773 data

 $\blacktriangleright D \rightarrow \phi P$, (P= π , K, η) are suppressed by phase space due to ϕ meson mass.

\blacktriangleright M_{BC} vs M_{KK} two dimensional fit are performed to determine the yields.

Decay mode	ΔE (GeV)	$N^i_{ m sig}$	$arepsilon^i(\%)$	$\mathcal{B}^i(imes 10^{-4})$	$\mathcal{B}_{ m PDG}(imes 10^{-4})$ [4]
$D^+ \rightarrow \phi \pi^+$	[-0.020, 0.019]	17527 ± 152	37.7 ± 0.1	$57.0 \pm 0.5 \pm 1.3$	53.7 ± 2.3
$D^+ \to \phi K^+$	[-0.019, 0.018]	12^{+28}_{-12}	23.7 ± 0.1	$0.062^{+0.144}_{-0.062}\pm 0.002\ < 0.21$ at 90% CL	_
$D^0 o \phi \pi^0$	[-0.077, 0.035]	3333 ± 76	27.7 ± 0.1	$11.68 \pm 0.28 \pm 0.28$	13.2 ± 0.8
$D^0 o \phi \eta$	[-0.040, 0.038]	102 ± 26	13.7 ± 0.1	$1.81 \pm 0.46 \pm 0.06$	1.4 ± 0.5

- SCS $D^{+(0)} \rightarrow \phi \pi^{+(0)}$, $D^0 \rightarrow \phi \eta$ are measured with higher precision.
- ▶ DCS $D^+ \rightarrow \phi K^+$ is studied for the first time.
- ▶ Ratio of $D^0 \rightarrow \phi \pi^0$ and $D^+ \rightarrow \phi \pi^+$ is used to test isospin symmetry.(Consistent.)

$D_s^+ o \pi^+ \pi^0 \eta$

PRL Accepted (arXiv:1903.04118)

Based on the 4178 data

- Amplitudes analysis based on DT 1239 events(purity:97.7%)
- W-annihilation dominant.

Amplitude	$\phi_n \ (\mathrm{rad})$	FF_n
$D_s^+ \to \rho^+ \eta$	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \to (\pi^+ \pi^0)_V \eta$	$0.612 \pm 0.172 \pm 0.342$	$0.054 \pm 0.021 \pm 0.025$
$D_s^+ \to a_0(980)\pi$	$2.794 \pm 0.087 \pm 0.044$	$0.232 \pm 0.023 \pm 0.033$

> BF($D_s^+ \rightarrow \pi^+ \pi^0 \eta$)=(9.50±0.28±0.41)%, improved precision.

First measurement (16.2σ stat. significance)
BF(D_s^+ ->a₀(980)⁺⁽⁰⁾ π⁰⁽⁺⁾, a₀(980)⁺⁽⁰⁾->π⁺⁽⁰⁾η)=(1.46±0.15±0.23)%

> Large W-annihilation decay rate when compared with $p\overline{n}/\omega\pi^+$ (~10⁻³ level).

$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$

PRD99,092008(2019)

Based on the 3773 data

- First Amplitudes analysis based on DT 5950 events(purity:98.9%)
- One of the largest BF in D⁰ decays

> BF($D^0 \to K^- \pi^+ \pi^0 \pi^0$)=(8.86±0.13±0.19)%, dominated by $D^0 \to K^- a_1(1260)^+$

$D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

PRD submitted(arXiv:1901.05936)

Based on the 3773 data

Amplitudes analysis based on DT 4559 events(purity:97.5%)

Extracted BFs by the PDG BF(D⁺ \rightarrow K_s $\pi^+\pi^+\pi^-$)

Component	Branching fraction $(\%)$
$D^+ \to K_S^0 a_1(1260)^+ (\rho^0 \pi^+)$	$1.197 \pm 0.062 \pm 0.086 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.163 \pm 0.021 \pm 0.005 \pm 0.006$
$D^+ \to \bar{K_1}(1400)^0 (K^{*-}\pi^+)\pi^+$	$0.642 \pm 0.036 \pm 0.033 \pm 0.024$
$D^+ \to \bar{K}_1(1270)^0 (K^0_S \rho^0) \pi^+$	$0.071 \pm 0.009 \pm 0.021 \pm 0.003$
$D^+ \to \bar{K}(1460)^0 (K^{*-}\pi^+)\pi^+$	$0.202 \pm 0.018 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}(1460)^0 (K^0_S \rho^0) \pi^+$	$0.024 \pm 0.006 \pm 0.015 \pm 0.009$
$D^+ \to \bar{K}_1(1650)^0 (\tilde{K}^{*-} \pi^+) \pi^+$	$0.048 \pm 0.012 \pm 0.027 \pm 0.002$
$D^+ \rightarrow K_S^0 \pi^+ \rho^0$	$0.190 \pm 0.021 \pm 0.089 \pm 0.007$
$D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^-$	$0.241 \pm 0.018 \pm 0.018 \pm 0.009$
	•

- Improved precisions.
- Consistent with previous measurements.
- ► Also $D^+ \to K_s a_1(1260)^+$ dominated. (Consistent with $D^0 \to K^- \pi^+ \pi^+ \pi^-$: PRD 95,072010(2017))
- → While $D^+ \to \overline{K}_1(1400)^0 \pi^+$ is found to larger, unlike what we saw in the two D⁰ decays.

 $\Lambda_c^+ \to \Sigma^+ \eta, \Sigma^+ \eta'$

Figure 1. Representative tree level diagrams of decays of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$.

- Decay through internal W-emission and W-exchange.
- Both are non-factorable in theoretic calculation.
- Large variations in theory: $B(\Lambda_c^+ \to \Sigma^+ \eta) = (0.11 0.94)\%, B(\Lambda_c^+ \to \Sigma^+ \eta') = (0.1 1.28)\%$
- $\Lambda_c^+ \rightarrow \Sigma^+ \eta$ is measured by CLEO with BF=(0.70±0.23)% (~33% uncertainty)
- $\Lambda_c^+ \to \Sigma^+ \eta'$ is not observed yet.

 $\Lambda_c^+ \to \Sigma^+ \eta$, $\Sigma^+ \eta'$

8 2.29 2.3 M_{BC} (GeV/c²)

8 2.29 2. M_{BC} (GeV/c²)

3.3σ

(b) Λ**⁺**→Σ⁺η'

2.26

 $100 \models (d) \Lambda_{c}^{+} \rightarrow \Sigma^{+} \omega$

2.26

2.27

2.27

2.28

2.28

CPC43,083002(2019)

 $R_{ac} = \frac{\mathcal{B}(a)}{\mathcal{B}(c)} = \frac{N_a \varepsilon_c \mathcal{B}(\pi^0 \to \gamma \gamma)}{N_c \varepsilon_a \mathcal{B}(\eta \to \gamma \gamma)}$ 0) m (0)

$$R_{bd} = \frac{\mathcal{B}(b)}{\mathcal{B}(d)} = \frac{N_b \varepsilon_d \mathcal{B}(\omega \to \pi^+ \pi^- \pi^0) \mathcal{B}(\pi^0 \to \gamma \gamma)}{N_d \varepsilon_b \mathcal{B}(\eta' \to \pi^+ \pi^- \eta) \mathcal{B}(\eta \to \gamma \gamma)}$$

Decay mode	N_i	$arepsilon_i$ (%)
(a) $\Lambda_c^+ \to \Sigma^+ \eta$	14.6 ± 6.6	7.80
(b) $\Lambda_c^+ \to \Sigma^+ \eta'$	13.0 ± 4.8	4.61
(c) $\Lambda_c^+ \to \Sigma^+ \pi^0$	122.4 ± 14.5	8.98
(d) $\Lambda_c^+ \to \Sigma^+ \omega$	135.4 ± 20.4	7.83

- $\Lambda_c^+ \rightarrow \Sigma^+ \eta$ is smaller than CLEO but still compatible within uncertainty.
- $\Lambda_c^+ \rightarrow \Sigma^+ \eta'$ is measured for first time.
- Our measurement contradict with most theoretical calculations.

Decay mode	Körner 5	Sharma 3	Zenczykowski [4]	Ivanov 6	CLEO [12]	This work
$\Lambda_c^+\!\rightarrow\!\Sigma^+\eta$	0.16	0.57	0.94	0.11	$0.70{\pm}0.23$	$0.41{\pm}0.20~({<}0.68)$
$\Lambda_c^+ \mathop{\rightarrow} \Sigma^+ \eta'$	1.28	0.10	0.12	0.12	-	$1.34{\pm}0.57~({<}1.9)$

Events/(2.5 MeV/c²)

Events/(2.0 MeV/c²)

10

5

2.25

60

40

20

2.25

2.5σ

2.28

2.29

M_{BC} (GeV/c²)

 $\frac{8 \quad 2.29 \quad 2.3}{M_{BC} \, (GeV/c^2)}$

2.3

 $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)} = 0.35 \pm 0.16 \pm 0.03 \quad \frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)} < 0.58$

 $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)} = 0.86 \pm 0.34 \pm 0.07 \quad \frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)} < 1.2 \quad \bullet$

(a) $\Lambda_{c}^{+} \rightarrow \Sigma^{+} \eta$

2.26

 $^{(c)}\Lambda^+_c \rightarrow \Sigma^+ \pi^0$

2.26

2.27

 $\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda^+ \to \Sigma^+ \eta)} = 3.5 \pm 2.1 \pm 0.4$

2.28

2.27

Events/(2.5 MeV/c²

Events/(2.0 MeV/c²

2.3

5

2.25

2.25

The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

- The inclusive process mediated by the *c-s* transition.
- Essential input in the calculation of the Λ_c^+ life time.
- Useful in understanding the heavier charmed baryons, esp. the less known doubleor triple-charm baryons.
- Current PDG: BF($\Lambda_c^+ \rightarrow \Lambda + X$)=(35±11)% with large uncertainty.
- The sum of know exclusive modes only accounts for (24.5±2.1)% => need better understanding of the gap between exclusive and inclusive rates.
- Comparison with K+X will shed light on the Λ_c^+ internal dynamics.
- Search for the CPV by measuring the asymmetry. $\mathcal{A}_{CP} \equiv \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) - \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_c^+ \to \Lambda + X) + \mathcal{B}(\bar{\Lambda}_c^- \to \bar{\Lambda} + X)}$

2019/8/17

The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

$$N^{\rm sig} = N^{\rm S} - \frac{N^{\rm A} + N^{\rm B}}{2} - f \cdot (N^{\rm D} - \frac{N^{\rm C} + N^{\rm E}}{2})$$

 Comparison with K+X will shed light on the internal dynamics

- In the ST modes of $\Lambda_c^+ \rightarrow pK^-p^+$ and pK_s^0 , to measure the probability of find a Λ in the final states.
- Extract yields from 2D distributions in bins of *p*-|*cosθ*|
- Data-driven 2D efficiency correction using several Λ control samples.
- B($\Lambda_C^+ \to \Lambda + X$) = (38.2^{+2.8}_{-2.2} ± 0.8)% (excl. rate (24.5 ± 2.1)% observed, indicates ~1/3 BFs are unknown)

•
$$A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.4)\%$$
 (No CPV is observed.)

- BESIII has collected data samples corresponding to luminosities of 2.93 fb⁻¹, 3.19 fb⁻¹ and 0.567 fb⁻¹ at center-of-mass energies of 3.773, 4.178, and 4.6 GeV, respectively.
- BESIII is a charm factory to study charm hadron decays and released many new results.
- > Threshold features: low backgrounds and high detection efficiency
- **BEPCII** is ready for energy up to 4.7GeV.
- More fruitful results will come out!

Prospect Charm Hadron data sample at BESIII

D		Const 1.4	
Energy	physics nighlight	Current data	Expected final data
		# of events	# of events
		or integrated luminosity	or integrated luminosity
1.8 - 2.0 GeV	R values	N/A Scan: 3 energy points	
	cross-sections		
2.0 - 3.1 GeV	R values	Scan: 20 energy points	No requirement
	cross-sections		
J/ψ peak	Light Hadron & Glueball	5.0 billion	10.0 billion
	Charmonium decay		
$\psi(3686)$ peak	Light hadron& Glueball	0.5 billion	3.0 billion
	Charmonium decay		
$\psi(3770)$ peak	D^0/D^{\pm} decays	2.9 fb^{-1}	20.0 fb^{-1}
	Form-factor/CKM		
	decay constant		
3.8 - 4.6 GeV	R value	Scan: 105 energy points	No requirement
	XYZ/Open charm		
4.180 GeV	D_s decay	3.1 fb^{-1}	6.0 fb^{-1}
	XYZ/Open charm		
	XYZ/Open charm		Scan: 30.0 fb^{-1}
4.0 - 4.6 GeV	Higher charmonia	Scan: 12.0 fb^{-1}	$10 \text{ MeV step}/0.5 \text{ fb}^{-1}/\text{point}$
	cross-sections		30 energy points
$4.60 \mathrm{GeV}$	Λ_c/XYZ	0.56 fb^{-1}	1.0 fb^{-1}
4.64 GeV	Λ_c/XYZ	N/A	5.0 fb^{-1}
4.65 GeV	Λ_{o}/XYZ	N/A	0.2 fb^{-1}
4 70 CoV		/	0.2 10
4.10 Gev	Λ_c/XYZ	N/A	0.65 fb ⁻¹
4.80 GeV	$\frac{\Lambda_c/XYZ}{\Lambda_c/XYZ}$	N/A N/A	0.65 fb ⁻¹ 1.0 fb ⁻¹
4.80 GeV 4.90 GeV	$ \begin{array}{c} \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \end{array} $	N/A N/A N/A	0.65 fb ⁻¹ 1.0 fb ⁻¹ 1.3 fb ⁻¹
	$\begin{array}{c} \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline Charm Baryons \end{array}$	N/A N/A N/A N/A	$\begin{array}{c} 0.65 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \\ \hline 1.3 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \end{array}$
$ \begin{array}{r} 4.70 \text{ GeV} \\ 4.80 \text{ GeV} \\ 4.90 \text{ GeV} \\ \overline{\Sigma_c^+ \overline{\Lambda_c^-}} 4.74 \text{ GeV} \\ \overline{\Sigma_c \overline{\Sigma}_c} 4.91 \text{ GeV} \end{array} $	$\begin{array}{c} \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline \Lambda_c/XYZ \\ \hline Charm Baryons \\ \hline Charm Baryons \\ \end{array}$	N/A N/A N/A N/A N/A	$\begin{array}{c} 0.65 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \\ \hline 1.3 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \\ \hline 1.0 \text{ fb}^{-1} \end{array}$