

η Decay Program at GlueX

A. Somov (Jefferson Lab)

for the GlueX Collaboration

HADRON 2019, August 18, 2019, Guilin, China

- Primakoff production of η mesons
- Study rare decays of η mesons

Outline

> PrimEx η experiment with the GlueX detector to measure the width $\Gamma(\eta \rightarrow \gamma \gamma)$ using Primakoff process

- collected about 30 % of data in Spring 2019

- the experiment complements the Primakoff program at Jefferson Lab (see talk by L. Gan about measurement of $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ in Hall B)
- Study rare decays of eta mesons
 - future GlueX experiment (approved)
 - require upgrade of the GlueX forward calorimeter

GlueX Detector

- Optimized to detect multi-particle final states
- Hermetic, large/uniform acceptance for charged and neutral particles, good energy and momentum resolution

see talks by M.Shepherd, D.Mack, S. Dobbs

Primakoff η Experiment

The Primakoff Method

- Extract decay width $\Gamma(\eta \rightarrow \gamma \gamma)$ from the measured cross section $d\sigma/d\Omega$
 - Use low A targets LH₂ and LHe₄ to control:
 - coherency
 - contributions from nuclear processes

Measurements of $\Gamma(\eta \rightarrow \gamma \gamma)$

- > The partial width $\Gamma(\eta \rightarrow \gamma \gamma)$ was derived from measurements
 - collider experiments in the reaction $e^+e^- \rightarrow e^+e^- \eta$
 - Primakoff production of η mesons
- Some disagreemnts between collider and Primakoff results

Experiments

New PrimEx experiment in Hall D at Jefferson Lab Measure $\Gamma(\eta \rightarrow \gamma \gamma)$ using Primakoff process with the precision of 3.2%

Physics Motivation

> Light quark mass ratio:

• $\Gamma(\eta \rightarrow \gamma \gamma)$ obtained in PrimEx can be used to compute $\Gamma(\eta \rightarrow 3\pi)$

 $\Gamma(\eta \rightarrow 3\pi) = \Gamma(\eta \rightarrow \gamma\gamma) \cdot BR(3\pi) / BR(\gamma\gamma)$

Branching fractions are measured with good precision

• $\eta \rightarrow 3\pi$ is forbidden by isospin symmetry. The quark mass ratio R can be extracted from the width $\Gamma(\eta \rightarrow 3\pi)$

$$R^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \quad \text{where } \hat{m} = \frac{1}{2}(m_u + m_d)$$

Physics Motivation

- Model dependent extraction of the mixing angle
- Uncertainty in the $\Gamma(\eta' \rightarrow \gamma \gamma)$ has less impact on the angle extraction

Reconstruction of Compton Events

- > Measure Compton $\gamma + e \rightarrow \gamma + e$ cross section in the forward direction during physics production runs
- Monitor target thickness and beam flux during production runs (rate of reconstructed events ~ 30 Hz)
- > Use Compton for the cross section normalization

Install Compton calorimeter behind forward calorimeter

- 12x12 (24 x 24 cm²) PbWO₄ crystals

$\eta \rightarrow \gamma \gamma$ Angular Distribution

GlueX Upgrade

FCAL

- Upgrade the inner part of the lead glass Forward Calorimeter with the PbWO₄ crystals (FCAL-II)
 - significantly improve detection of multi-photons from η decays
 - allow to study rare decays such as $\eta \rightarrow \pi^0 \gamma \gamma$ in the $\gamma + p \rightarrow \eta + p$ reaction using a beam of tagged photons with the energy between 9 11.7 GeV

Jefferson Lab Eta Factory (JEF)

JEF Project Overview

Mode	Branching Ratio	Physics Highlight	Photons
priority:			
$\pi^0 2\gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	$\chi PTh \text{ at } \mathcal{O}(p^6)$	4
$\gamma + B$	beyond SM	leptophobic dark boson	4
$3\pi^0$	$(32.6 \pm 0.2)\%$	$m_u - m_d$	6
$\pi^+\pi^-\pi^0$	$(22.7 \pm 0.3)\%$	$m_u - m_d$, CV	2
3γ	$< 1.6 \times 10^{-5}$	CV, CPV	3
ancillary:			
4γ	$<2.8\times10^{-4}$	$< 10^{-11}[112]$	4
$2\pi^0$	$< 3.5 \times 10^{-4}$	CPV, PV	4
$2\pi^0\gamma$	$< 5 \times 10^{-4}$	CV, CPV	5
$3\pi^0\gamma$	$< 6 imes 10^{-5}$	CV, CPV	6
$4\pi^{0}$	$< 6.9 \times 10^{-7}$	CPV, PV	8
$\pi^0\gamma$	$< 9 imes 10^{-5}$	CV,	3
		Ang. Mom. viol.	
normalization:			
2γ	$(39.3 \pm 0.2)\%$		
			2

Main physics goal:

- Probe interplay of VMD & scalar resonances in ChPT to calculate O(p⁶) LEC's in the chiral Lagrangian
- Search for a dark boson (B)
- Directly constrain CVPC new physics
- 4. Constrain the light quark mass ratio

Impact of $\eta \rightarrow \pi^0 \gamma \gamma$ measurements on ChPT

> Unique probe for the high order ChPT: the major contributions to $\eta \rightarrow \pi^0 \gamma \gamma$ are two O(p⁶) counter-terms in the chiral Lagrangian

L. Ametller, J, Bijnens, and F. Cornet, Phys. Lett., B276, 185 (1992)

- Study contribution of scalar resonances in calculation of O(p⁶) low-energy constants (LEC) in the chiral Lagrangian
- Shape of Dalitz distribution is sensitive to the role of scalar resonances

J.N. Ng, et al., Phys. Rev., D46, 5034 (1992)

Measurements of $\eta \rightarrow \pi^0 \gamma \gamma$

 $\gamma p \rightarrow \eta p \ (\mathbf{E}_{\gamma} = 1.5 \ \mathbf{GeV})$

GAMS (Z. Phys. C25,225, 1985) $\pi p \rightarrow \eta p \ (\mathbf{E}_{\pi} = 30 \text{ GeV})$

JEF (proposed) $\gamma p \rightarrow \eta p (E_{\gamma} = 9-11.7 \text{ GeV})$

- Smaller background with η energy boost
- Large statistics

Projections for $\eta \rightarrow \pi^0 \gamma \gamma$ Decay

Constrain contribution of scalar resonances in the calculation of $O(p^6)$ low-energy constants

A2 at MAMI arXiv:1405.4904, 2014

Search for B boson

• Dark leptophobic B-boson

$$L = \frac{1}{3} g_B \overline{q} \gamma^\mu q B_\mu + \dots$$

• Arises from a new gauge baryon symmetry U(1)_B

Early studies by Lee and Yang, Phys.Rev.,98 (1955) 1501; Okun, Yad.Fiz., 10 (1969) 358,

• Unified genesis of baryonic and dark matter

• the $m_B < m_\rho$ region is strongly constrained by long-range forces search exp. ; the $m_B > 50 GeV$ has been investigated by the collider experiments

• GeV-scale domain is poorly constrained discovery opportunity!

Search for B-boson in η decay

B production:

A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989)

$$\eta \rightarrow B\gamma$$
 decay (m_B < m_η)

B decay: $B \rightarrow \pi^0 \gamma$ in 140-600 MeV mass range

JEF Experimental Reach $(\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma)$

A stringent constraint on the leptophobic B-boson in 140-550 MeV range

Summary

- The GlueX detector provides a unique capability to perform a precision measurement of the η radiative decay width using Primakoff reaction
- > The measurements are essential for testing the Chiral symmetries and anomaly and will be used for the extraction of fundamental properties such as the light quark mass ratio, and the $\eta - \eta'$ mixing angles
- > The PrimEx η experiment collected about 30 % of required data in Spring 2019
- Future upgrade of the GlueX calorimeter will provide an opportunity to study rare decays of η mesons
 - Test the role of scalar dynamics in ChPT through $\eta \rightarrow \pi^0 \gamma \gamma$
 - Probe a leptophobic dark B-boson in 140 550 MeV range via $\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma$

Hall D Photon Beam Line

Use standard Hall D beam line equipment for PrimEx D

Pair Spectrometer: Compton Calorimeter (new): measure/monitor photon flux monitor target thickness and detector stability

Tagged Photon Beam

Photon Flux Measurements with Pair Spectrometer

• Reconstruct the energy of a beam photon by detecting e^{\pm} pairs (6 < E $_{\gamma}$ < 12 GeV)

Two layers of scintillator detectors:

Monitor the photon flux with the precision < 1 %

Reconstruction of γ + p $\rightarrow 2\gamma$ + p

Forward Lead Glass Calorimeter

- Angular coverage $2^{\circ} < \theta < 11^{\circ}$
- 2800 lead-glass F8-00 blocks: $4 \times 4 \times 45 \text{ cm}^3$
- FEU84-3 PMTs and Cockroft-Walton bases
- Reconstructed $\gamma + p \rightarrow \gamma + \gamma + p$ events

$$\frac{\sigma_E}{E} = \frac{6}{\sqrt{E}} \oplus 2.0 \quad (\%) \qquad \sigma_{X,Y} = \frac{6.4 \ mm}{\sqrt{E}}$$

Reconstruction of Primakoff η

Event selection and resolutions:

- \succ Two clusters in the FCAL. Invariant mass consistent with η , $\sigma_M \sim 19$ MeV
- Match time between the tagger hit (beam time) and FCAL to reduce accidentals
- \blacktriangleright Energy conservation in the reaction (elasticity), $\sigma_{\rm E} \sim 270 \, {\rm MeV}$
- \blacktriangleright Angular resolution of reconstructed η mesons ~1 mrad
- \blacktriangleright Acceptance and reconstruction efficiency ~ 70 %

Background from other hadronic interactions:

- $\gamma p \rightarrow n \eta \pi^+$
- $\gamma p \rightarrow p \pi^0 \gamma$
- $\gamma p \rightarrow p \eta \pi^0$ studied using Pythia event generator
 - use GlueX sub-detectors to veto/suppress
 - background level: ~3%, will be measured and subtracted

Control of Overall Systematics

Install CompCal calorimeter behind FCAL
 - 10x10 (20 x 20 cm²) PbWO₄ crystals

> Measure Compton $\gamma + e \rightarrow \gamma + e$ cross section in the forward direction using CompCal and FCAL

 Measure and monitor target thickness and beam flux during production runs (rate of reconstructed events – 30 Hz)

PrimeEx D Targets

- liquid H_2 target (3.6 % R.L.): standard GlueX target
- liquid He target (4.0 % R.L.):

modify GlueX target add heat shield around the target cell

• Be target: Luminosity calibration using Compton process

Beam Time and Statistics

> Total cross section

LH2 for $\theta_{\eta} = (0-5)^0$ $\sigma = 61.4$ nb (~2% is Primakoff process)

Reconstructed events:

~ 260 Primakoff η events/day

LH2 target run	40 days
LHe4 target run	30 days
Empty target run	6 days
Tagger efficiency, TAC runs	1 days
Setup calibration and checkout	2 days
Total	79 days

1% statistical error for Primakoff events for each target

Estimated Error Budget

> Systematical errors:

(added quadratically)

Contributions	Estimated Error
Luminosity	1.2%
Background subtraction	2.0%
Event selection	1.7%
Acceptance, misalignment	0.5%
Beam energy	0.2%
Detection efficiency	0.5%
Branching ratio (PDG)	0.66%
Total Systematic	3.02%

> Total estimated error:

(added quadratically)

Statistical error	1.0%
Systematic error	3.02%
Total Error	3.2%

Target Density Monitor

- Short term stability control:
 - photon beam flux provided by the PS
 - rates in the Start Counter (ST) and Time-of-Fight (TOF) wall

ST rate dependence on the target density

ST consists of 30 paddles surrounding the target

ST rate for production runs: 250 kHz / paddle

Coincidence of hits between the ST and TOF (2 x 2 bars in TOF at R = 30 cm & one ST paddle) 1.5 kHz

- Long term stability control:
 - monitor using Compton process; expected rate in the photon range of interest is about 30 Hz (see Liping's talk)

Symmetries in QCD and Light Pseudoscalar Mesons

> $\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, and $\eta' \rightarrow \gamma \gamma$ decays are associated with the Chiral anomaly

- Decay widths can be computed precisely in higer orders
- > SU(3) and isospin breaking by the unequal quark masses induce mixing among $\pi^0_{,\eta}$, and $\eta'_{,\eta}$

 π^0 , η , η' mesons provides a rich laboratory to study the symmetry structure of QCD at CEBAF energies

The Primakoff Method

• Separate Primakoff amplitude from hadronic processes:

$$ig\langle heta_{
m Pr}ig
angle_{_{peak}} \propto rac{m^2}{2\cdot E^2} \qquad heta_{_{NC}} \propto rac{2}{E\cdot A^{1/3}}$$

- Use low A targets LH_2 and LHe_4 to control:
 - coherency
 - contributions from nuclear processes

Requirements to the experiment:

- good angular resolution for reconstructed η mesons
- precise measurements of luminosity

GlueX Detector

$\eta \rightarrow \pi^0 \gamma \gamma$: Partial Decay Width

χPTh by Oset et al., Phys. Rev. D77, 07300 (2008) arXiv:08801 (2013)

Upgrade of the Forward Calorimeter

 Replace inner part of the lead glass calorimeter by PWO crystals

Property	Improvement factor
Energy o	2
Position σ	2
Granularity	4
Radiation- resistance	10

MC simulation:

- Reconstructed $\eta \rightarrow \pi^0 \gamma \gamma$ events during 1 day of taking data