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Outline of the talk
• QCD as a field theory describing hadrons in terms of quarks and
gluons. Unlike to QED this problem in QCD is nonperturbative in
coupling.
• LF formulation advantages: simple vacuum and physical Fock
space for quarks and gluons.
• LF zero mode, its relation to nonperturbative effects like
condensates. Difficalties with taking this mode into account on the
LF.
• Approaching to LF formulation from standard space-like
formulations close to the LF as a way to investigate zero mode
dynamics. This limit transition should be different for zero and
nonzero modes.
• The expression for m2

eff including the contribution of zero mode.
• Construction of effective LF Hamiltonian with zero mode as
independent dynamical variable.
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• The description of hadron states in terms of constituent quarks
and gluons, related to nonzero modes.
• From effective LF Hamiltonian to spectral equation for
quark-antiquark bound states.
• Large quark mass limit and analitical solution of the spectral
equation.
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Relativistic physics of elementary particles is related to QFT. In
QCD hadrons are to be described as bound states of quark and
gluon fields. However this is difficult due to strong coupling.
Nonperturbative methods like calculations on the space-time
lattice are required.



5/41

Effective Light Front QCD Hamiltonian and spectral equation for quark-antiquark states

The proposed by Dirac LF formulation of field theory allows to
simplify the description of quantum vacuum state, identifying it
with the state having zero LF longitudinal momentum

p− =
p0 − p3√

2
≥ 0

(LF coordinates: x± = (x0 ± x3)/
√

2, x⊥ = (x1, x2), x+ plays the
role of time x0 and fields are quantized on the LF: x+ = 0).

x

x

xx 0

3

x = 0
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The component

P+ =
P0 + P3√

2

plays the role of Hamiltonian and depends on interaction, while P−

is kinematical quantity, independing on the coupling.
Moreover, on the LF not only free fields, but also interacting ones,
can be represented in terms of creation and anihilation operators in
LF Fock space:

ϕ(x) =

∞∫

0

dp−dp⊥√
2p−

(
a(p−, x

⊥; x+)e−ip−x−

+ H.c .
)
,

P− =

∫ ∞

0
dp−

∫
dp⊥p−a+(p−, x

⊥; x+)a(p−, x
⊥; x+),

a(p−, x
⊥; x+)|0〉 = 0.

Therefore LF formalism could be used as an alternative to other
nonperturbative methods.
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The difficulties of LF formulation are related to the singularity at
p− → 0, so that zero (p− = 0) mode of field is not defined.
However this mode is responsible for vacuum effects (e.g.
condensate description). It is not possible to ignore this mode in
nonperturbative domain of QCD. The regularization |x−| ≤ L and
introduction of p. b. c. makes p− = πn/L, n ∈ Z, so that zero
mode, n = 0, is present, but in canonical formalism it has no
independent dynamics. It should be expressed through others,
nonzero, modes via canonical constraints (note, that there the
momentum Π(0) canonically conjugated to zero mode field ϕ(0) is
zero: Π(0) = 0). The constraints are so complicated that they can
not be practically solved for zero mode. To overcome this difficulty
with zero mode we start to investigate how it arises when one goes
from usual formulation of field theory on space-like hyperplanes to
LF.
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With this aim we introduce approximating LF coordinates,
y0 = x+ + (η2/2)x−, y3 = x−, y⊥ = x⊥ with small parameter
η > 0, components of momentum in these coordinates:
q0 = p+, q3 = p− − (η2/2)p+, q⊥ = p⊥.

x3

x0 x+

y0x−

y3
η2

2

These coordinates are closely related to Lorentz coordinates in the
Lorentz frame fastly moving w. r. to xµ-frame:
x ′± = (η/

√
2)∓1x±, x ′⊥ = x⊥.

We use the Hamiltonian on the plane y0 = 0 and extract the term
H(0) with only zero (q3 = 0) modes of fields.



9/41

Effective Light Front QCD Hamiltonian and spectral equation for quark-antiquark states

Metric tensor gµν : g00 = 0, g03 = 1, g33 = −η2/2 (g00 = η2/2,
g03 = 1, g33 = 0), gkk′ = −δkk′ .

Lgluon(y) = −1

2
Tr
(
FµνFρλg

ρµgλν
)

=

= Tr
(
F 2

03(y) + 2F0k(y)F3k(y) + η2F 2
0k(y) − F 2

12(y)
)
,

Lquark(y) = i
√

2ψ+
+(y)D0 ψ+(y) +

iη2

√
2
ψ+
−(y)D0 ψ−(y)+

+ i
√

2ψ+
−(y)D3 ψ−(y) + i ψ+

−(y) (D⊥ − M)ψ+(y)+

+i ψ+
+(y) (D⊥ + M)ψ−(y),

where A0(y), A3(y), F03(y), F0k(y), F3k(y), D0, D3 are related to
”y” coordinate system, and ψ±(y) ≡ ψ±(x(y)).
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Canonical formulation on y0 = 0:

Πa
3(y) = F a

03(y), Πa
k(y) = F a

3k(y)+η2F a
0k(y), F a

0k =
Πa

k − F a
3k

η2
,

∫
d4yLgluon(y) =

∫
d4y (Πa

3∂0A
a
3 + Πa

k∂0A
a
k −Hg (y)) ,

Hg (y) =
1

2
(Πa

3)
2 +

η2

2
(F a

0k)2 +
1

2
(F a

12)
2 − Aa

0 (D3Π3 + DkΠk)a =

=
1

2
(Πa

3)
2 +

(Πa
k − F a

3k)2

2η2
+

1

2
(F a

12)
2 − Aa

0 (D3Π3 + DkΠk)a ,

Hquark(y) contains i
√

2ψ+
+(y)D0 ψ+(y) which gives

√
2gAa

0ψ
+
+(y)

λa

2
ψ+(y) term, so that the constraint at Aa

0 has the form

(D3Π3 + DkΠk)a+g
√

2ψ+
+

λa

2
ψ+ = 0 this gives in Aa

3 = 0 gauge:

Πa
3 = −∂−1

3

(
(DkΠk)a + g

√
2ψ+

+

λa

2
ψ+

)
.
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We can separate zero mode Ak(0) (Ak = Ak(0) + Ãk),

∂3Ak(0) = 0,

∫ L

−L

dy3Ãk = 0.

Ak(0)(y
⊥, y0 = 0) has conjugated momentum 2LΠk(0) :

∫
d4y

(
Πk(0)∂0Ak(0)

)
=

∫
dy0dy⊥

(
2LΠk(0)∂0Ak(0)

)
.

The momentum conjugated to Ak(0)(y) will be denoted by

πa
k(y⊥ = x⊥, y0 = 0) ≡ 2LΠk(0)(y). It enters into the Hamiltonian

as
1

4Lη2

∫
d2y⊥ (πa

k)2 .
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As for usual QFT Hamiltonians, which are similar to oscillator
Hamiltonians, the canonical momentum Π(y) enters quadratically
into the Hamiltonian. If we denote by πa

k(x⊥) the canonical
momentum conjugated to zero mode of gluon field Aa

k(0)(x
⊥)

(a = 1, . . . ,N2 − 1 for SU(N) color group symmetry, k = 1, 2 –
transverse Lorentz indeces) we can describe this term H(0) as
follows:

H(0) =
1

4Lη2

∫
d2x⊥πa

kπ
a
k .

This expression explicitly shows why in η → 0 limit, i.e. on the LF,
we need to have πa

k = 0 as a condition for finiteness of LF
”energy”. However, with the more simple models, like QED(1+1)
we can find that vacuum effects may be taken into account only if
we change the form of limit transition to the LF for zero mode
terms in the Hamiltonian, namely, one should take η → 0 and
L → ∞ simultaneously at L0 = ηL fixed.
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So we try to consider zero mode terms of QCD Hamiltonian in
”η”-coordinates in the same way: we require the finite contribution
of H(0) to mass squared

m2 = 2q0q3 + η2q2
0 − q2

⊥

in η → 0 limit: for terms with only zero modes the m2 gets the
contribution from η2H(0) term, which is equal to

(
1

4Lη

∫
d2x⊥πa

kπ
a
k

)2

.

Therefore it remains finite at the limit η → 0, L → ∞, L0 = ηL
fixed. We keep the usual LF limit, η → 0 at fixed L, for terms with
nonzero modes.
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This leads us to propose the following effective form for mass
squared operator on the LF:

m2
eff =

(
1

4L0

∫
d2x⊥πa

kπ
a
k

)2

+ 2P+P− − P2
⊥,

where P+, P−, P⊥ are canonical expressions for momentum
operators in terms of fields on the LF.
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”η”-coordinates: y0 = x+ + (η2/2)x−, y3 = x−, y⊥ = x⊥.
Components of momentum in η-coordinates:
q0 = p+, q3 = p− − (η2/2)p+, q⊥ = p⊥.
The quantization on y0 = 0 is closely related to quantization in
Lorentz coordinates x ′± = (η/

√
2)∓1x±, x ′⊥ = x⊥, in Lorentz

frame, fastly moving w. r. to xµ-frame. Indeed, one has
x ′0 = η−1(x+ + (η2/2)x−) = η−1y0, so that the plane y0 = 0
coincide with the plane x ′0 = 0. Also
p′
3 = −η−1(p− − (η2/2)p+) = −η−1q3, so at η → 0 p′

3 → ∞
and only q3 = 0 corresponds to p′

3 = 0.
In QCD, formulated in η-coordinates, we have zero modes as
canonically independent variables, i.e. they have nonzero
canonically conjugated momentum. However when we approach to
the LF (η → 0), we see that the term containing this canonically
conjugated momentum becomes singular and to avoid the infinite
energy we need to set this momentum equal to zero in the limit.
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Indeed, let us consider gluon fields, Aµ(y), and quark fields, ψ(y),
in η-coordinates with p. b. c. in y3 for Aµ(y) and antiperiodic
boundary conditions for ψ(y). We have A0(y) = A+(x),
A3(y) = A−(x) − (η2/2)A+(x), A⊥(y) = A⊥(x) and take
A3(y) = 0. The A0(y) plays the role of Lagrange multiplier so that
gluons are described by A⊥(y). Let us denote by πa

⊥(y0 = 0, y⊥)
the canonical momentum conjugated to zero mode field
A⊥(0)(y

0 = 0, y⊥), i.e.[
Aa

k(0)(y
⊥), πb

k′(y ′⊥)
]
y0=y ′0=0

= iδkk′δabδ(2)(y⊥ − y ′⊥).

The πa
k(y0 = 0, y⊥) enters quadratically into the Hamiltonian. Let

us extract this term and denote it as H(0),

H(0) =
1

4Lη2

∫
d2y⊥πa

kπ
a
k .

In the limit η → 0 at fixed L this term is bounded only if πa
k → 0

in accordance with the LF canonical formalism.
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However for QED(1+1) we noticed that the correct description of
nonperturbative vacuum effects by zero modes corresponds to the
limit η → 0, L → ∞ at fixed L0 ≡ ηL. So we can propose to
consider different limit transitions for zero and nonzero modes as a
possibility to take into account nonperturbative effects
semiphenomenologically.
Let us estimate the contribution of zero mode (q3 = 0) to the
expression of mass squared operator

m2 = 2Q3Q0 + η2Q2
0 − Q2

⊥.

If we neglect the contribution of nonzero modes, then Q0 = H(0)

and we get

m2
(0) = η2H2

(0) − Q2
⊥ =

(
1

4Lη

∫
d2y⊥πa

kπ
a
k

)2

− Q2
⊥.

This contribution can be finite at finite Q⊥ and L0, and πa
k 6= 0.
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So our proposition in the LF limit:

m2
eff =

(
1

4L0

∫
d2x⊥πa

k(x)πa
k(x)

)2

+ 2P+P− − P2
⊥,

where πa
k(x) is the momentum, conjugated to zero mode of gluon

field on the LF and P+ is the canonical expression for the LF
Hamiltonian including zero mode of gluon field as independent
canonical variable. We can generate this expression for m2

eff in
usual form in LF coordinates if we introduce formally the
expression for the effective LF Hamiltonian Peff

+ :

Peff
+ =

1

2P−

(
1

4L0

∫
d2x⊥πa

kπ
a
k

)2

+ Pcan
+ .

Here we define the vacuum state |0〉 as P−|0〉 = πa
k(x⊥)|0〉 = 0.

Besides we exclude the term in the P+ containing only zero modes
to avoid states with p− = 0 but πa

k(x⊥) 6= 0.
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This model can be applied to the description of ”constituent”
quarks and gluons in hadrons describing this particles by nonzero
modes of corresponding fields. Zero mode of gluon field is used for
the construction of the state which is invariant w. r. to the gauge
symmetry transformations remaining after fixing the gauge Aa

− = 0.
We use gluon zero mode for the ”string” connecting ”constituent”
particles separated in transverse coordinates. We take this ”string”
in the form of ”path ordered” exponent

Ux⊥,x ′⊥ = Pexp


−ig

∫ x ′⊥

x⊥

∑

k=1,2

dzkAk(0)(z
⊥)


 ,

Ak(0)(z
⊥) = Aa

k(0)(z
⊥)(λa/2), where λa/2 are Gell-Mann like

matrices for SU(N), g is coupling constant, Ux⊥,x ′⊥ = U−1
x ′⊥,x⊥

.
We choose the path as the straight line in transverse plane, from
x⊥ to x ′⊥.
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Let us consider the action of new term in the Peff
+ on the state

containing only quark and antiquark connected by such a string.
Let us describe the path of this string between x⊥ and x ′⊥ as
follows: x ′1 − x1 = ρ cosϕ, x ′2 − x2 = ρ sinϕ, then

Ux⊥,x ′⊥ = lim
∆→0

i=ρ/∆∏

i=1

exp{−ig∆
(
A1(0)(zi ) cosϕ+ A2(0)(zi) sinϕ

)
}.

x ′1 − x1

x ′2 − x2

x ′⊥ − x⊥
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Let us introduce the fermion field as a bispinor ψ(x) =

(
ψ+

ψ−

)
,

where on the LF

ψ− = − 1√
2
∂−1
− (D⊥ − M)ψ+,

D⊥ ≡
∑

k=1,2 Dkσk , Dk = ∂k − igAk , σk are Pauli matrices and M

is fermion mass. We can write:

ψ+(x) =
2−1/4

√
2L

∑

n>0

(
bn(x

⊥)e−ipnx−

+ d+
n (x⊥)e ipnx

−
)
, n ∈ Z+1/2,

pn = πn/L, where b+
n and d+

n correspond to quarks and antiquarks
creation operators respectively.
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Introducing the ortonormal basis:

1√
N

b+
m(x⊥)Ux⊥,x ′⊥d+

m′(x
′⊥)|0〉 ≡ |mx⊥,m′x ′⊥〉,

we project our effective Hamiltonian onto this basis. Let us denote
the new term in the Peff

+ as Peff
+(0), then

Peff
+(0)|mx⊥,m′x ′⊥〉 = lim

∆→0

g4
(
N − 1

N

)2
(x⊥ − x ′⊥)2

4(4L0∆)22pm+m′

|mx⊥,m′x ′⊥〉.

So we obtain confinement in transverse direction.
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Canonical quantization on the Light Front (LF) of QCD in A− = 0
gauge.
Lagrangian density:

L = −1

2
Tr(FµνF

µν) + ψ(iγµDµ − M)ψ,

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ],

Dµ = ∂µ − igAµ, Aµ ≡ {Aij
µ}, i , j = 1, ...,N for SU(N),

ψ(x) =

(
ψ+

ψ−

)
.
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We define γµ as follows:

γ0 = i

(
0 −I

I 0

)
, γ3 = i

(
0 I

I 0

)
,

γk = i

(
−σk 0

0 σk

)
, k = 1, 2,

where σk is Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
.

Lagrangian density:

L = Tr
(
F 2

+− + 2F+kF−k − F 2
12

)
+ i

√
2ψ+

+ D+ ψ++ i
√

2ψ+
− D− ψ−+

+
(
i ψ+

− (D⊥ − M)ψ+ + H.c .
)
, D⊥ ≡ Dkσk ,

Under gauge transformation Ω(x)

ψ(x) → Ω(x)ψ(x), Aµ(x) → Ω(x)Aµ(x)Ω+(x)+
i

g
Ω(x)∂µΩ

+(x),

L is invariant.
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The adjoint representation Aa
µ(x) can be obtained with

Gell-Mann-like matrices λa = (λa)+, a = 1, ...,N2 − 1,

Aµ =
λa

2
Aa
µ, Tr(λaλb) = 2δab,

[
λa

2
,
λb

2

]
= if abc λ

c

2
,

∑

a

(
λa

2

λa

2

)
=

1

2

(
N − 1

N

)
, Fµν =

λa

2
F a
µν .
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Canonical formulation on the LF, x+ = 0:

Πa
−(x) =

∂L
∂(∂+Aa

−(x))
= F a

+−(x), Πa
k(x) =

∂L
∂(∂+Aa

k(x))
= F a

−k(x),

∫
d4x Lgluon(x) =

∫
d4x

(
Πa
−∂+Aa

− + Πa
k∂+Aa

k −Hgluon(x)
)
,

∫
d4x Hgluon(x) =

=

∫
d4x

(
1

2

(
Πa
−Πa

− + F a
12F

a
12

)
− Aa

+ (D−Π− + DkΠk)a
)
,

DµΠν ≡ ∂µΠν − ig [Aµ,Πν ].



27/41

Effective Light Front QCD Hamiltonian and spectral equation for quark-antiquark states

∂L
∂ψ+

−(x)
= i
(√

2D−ψ− + (D⊥ − M)ψ+

)
= 0

is the 2nd class constraint.

ψ− = − 1√
2
D−1
− (D⊥ − M)ψ+ :

∫
d4x Lquark =

=

∫
d4x

(
i
√

2ψ+
+ D+ ψ+ − i√

2
ψ+

+(D⊥ + M)D−1
− (D⊥ − M)ψ+

)
.

So we get Πψ+ = i
√

2ψ+
+ and the Hamiltonian:

H =

∫
dx−

∫
d2x⊥

[
1

2

(
Πa
−Πa

− + F a
12F

a
12

)
−Aa

+ (D−Π− + DkΠk)a +

+
i√
2
ψ+

+(D⊥ + M)D−1
− (D⊥ − M)ψ+ − g

√
2Aa

+ ψ
+
+

λa

2
ψ+

]
,

here the A+ is the Lagrangian multiplier,
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and the 1st class constraint

(D−Π− + DkΠk)a + g
√

2ψ+
+

λa

2
ψ+ = 0 gives

Πa
− = −D−1

−

(
(DkΠk)a + g

√
2ψ+

+

λa

2
ψ+

)
.

Thus we get for Hamiltonian:

H =

∫
dx−

∫
d2x⊥

[
1

2

(
D−1
−

(
(DkΠk)a + g

√
2ψ+

+

λa

2
ψ+

))2

+

+
1

2
(F a

12)
2 +

i√
2
ψ+

+(D⊥ + M)D−1
− (D⊥ − M)ψ+

]
≡ HLF .

The operator D− = ∂− in Aa
− = 0 gauge.
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Let us consider the action of the other terms in our effective
Hamiltonian on the chosen basis states. Actually we remain with
only that part of the Hamiltonian which contains fermion modes
and gluon zero modes. This part of the Hamiltonian has the
following form:

∫ L

−L

dx−

∫
d2x⊥

[
i√
2
ψ+

+(D⊥ + M)∂−1
− (D⊥ − M)ψ++

+g2∂−1
−

(
ψ+

+

λa

2
ψ+

)
∂−1
−

(
ψ+

+

λa

2
ψ+

)]
.

It contains the four-fermion term, which can be rewritten as
follows:
∫ L

−L

dx−

∫ L

−L

dx ′−

∫
d2x⊥

[(
ψ+

+

λa

2
ψ+

)

x−

|x−−x ′−|
(
ψ+

+

λa

2
ψ+

)

x ′−

]
.

This form of the interaction can be responsible for confinement in
x− direction, as was demonstrated by t’ Hooft in the example of
QCD(1+1).
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Due to locality of 4-fermion term in x⊥ it gives zero on our basis
states, except for the case when quark and antiquark are not
separated in x⊥.
To restore the interaction between separated quark-antiquark we
introduce nonlocal modification of this 4-fermion term in gauge
invariant way:

g2

πR2

∫ L

−L

dx−

∫
d2x⊥

∫

|x ′⊥−x⊥|≤R

d2x ′⊥∂−1
−

(
ψ+

+

λa

2
ψ+

)

x⊥

×

×∂−1
−

(
ψ+

+(x−, x ′⊥)Ux ′⊥,x⊥

λa

2
Ux⊥,x ′⊥ψ+(x−, x ′⊥)

)
,

where 1/(πR2) appears due to the averaging over the circle in
transverse plane of finite radius R , when we integrate over
(x ′⊥ − x⊥) at |x ′⊥ − x⊥| ≤ R . To obtain spectral equation we
consider the action of this term on the basis states.
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The spectral equation has the following form: 2P−Peff
+ |f 〉 = m2|f 〉

at P⊥|f 〉 = 0, where |f 〉 is the superposition of basis states:

|f 〉 =
∑

m,m′>0

δn,m+m′

∫
d2x⊥d2x ′⊥fm,m′(x ′⊥ − x⊥)|mx⊥,m′x ′⊥〉,

2P−|f 〉 = 2pn|f 〉, 〈mx⊥,m′x ′⊥|2P−Peff
+ |f 〉 = m2〈mx⊥,m′x ′⊥|f 〉.

Using ortonormality property of basis states we obtain the
eigenvalue equation for wave functions fm,m′(x ′⊥ − x⊥):
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m2fm,m′(x⊥) =

=

(
g4
(
N − 1

N

)2
ρ2

4(L0∆)2
+ pn

(
1

pm

+
1

p′
m

)(
M2 −52

⊥

)
)

fm,m′(x⊥)−

−g2
(
N − 1

N

)

2LπR2

∑

m1,m2>0

δn,m1+m2

pn

(pm − pm1)
2
fm1,m2(x

⊥)−

−g2
(
N − 1

N

)

4LπR2

∑

m1>0

pn

(
1

(pm + pm1)
2

+
1

(pm′ + pm1)
2

)
fm,m′(x⊥),

52
⊥ = ∂2

1 + ∂2
2 , ρ2 = (x1)2 + (x2)2, pn = pm + pm′ .
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To write this equation in L → ∞ limit let us introduce new
variables:

ξ =
pm

pn

, 1−ξ =
pm′

pn

, ξ′ =
pm1

pn

, dpm1 '
π

L
, dξ′ =

dpm1

pn

' π

Lpn

,

π

Lpn

∑

m1>0

p2
n

(
1

(pm + pm1)
2

+
1

(pm′ + pm1)
2

)
'

'
∫ ∞

0
dξ′
(

1

(ξ + ξ′)2
+

1

(1 − ξ + ξ′)2

)
= −1

ξ
− 1

1 − ξ
,

π

Lpn

∑

m1>0

p2
n

(
1

(pm − pm1)
2

)
'
∫ 1

0

dξ′

(ξ′ − ξ)2
.
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Thus we obtain the spectral equation in the following form:

(
M2 −52

⊥

ξ(1 − ξ)
+

g4
(
N − 1

N

)2
ρ2

4(4L0∆)2
−

−g2
(
N − 1

N

)

4π2R2

(
1

ξ(1 − ξ)

)
− C

)
f (ξ, x⊥)−

−g2
(
N − 1

N

)

2π2R2
P

∫ 1

0

dξ′ f (ξ′, x⊥)

(ξ′ − ξ)2
= m2f (ξ, x⊥),

where we renormalize the singularity at ξ′ = ξ in the integral by
introducing into equation the principal value symbol,

P
1

x2
=

1

2

(
1

(x + iε)2
+

1

(x − iε)2

)
,

and arbitrary renormalization constant C as the new parameter.
One can meet similar equation in papers S. J. Brodsky,
G. F. de Teramond, J. P. Vary, X. Zhao, J. R. Hiller, ...
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To solve this equation we start with the investigation of the large
quark mass limit. Let us rewrite the spectral equation in terms of
dimensionless variables: x = x⊥/R , m = mR , M = MR ,

β =
g2
(
N − 1

N

)

2L0a
R2, γ =

g2
(
N − 1

N

)

2π2
, 52

⊥ = 52
⊥R2

and change the variable ξ to ω = 2ξ − 1, −1 ≤ ω ≤ 1,

(
M

2 −52
⊥ − γ

2

1 − ω2
+
β2

4
x2

)
f (ω, x) − γ

2
P

∫ 1

−1

dω′ f (ω′, x)

(ω′ − ω)2
=

=
m2 + C

4
f (ω′, x).

Large quark mass limit corresponds to ω2 � 1. It is convinient to
introduce new variable s = Mω, −M ≤ s ≤ M, and expand the

equation in M
−1

. Assume also that γM ≡ γ1 is finite in this limit
then we get the following result:
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(
−52

⊥ + s2 +
β2

4
x2

)
f̃ (s, x)−γ1

2
P

∫ ∞

−∞

ds ′ f̃ (s ′, x)

(s ′ − s)2
=

m2 + C

4
f̃ (s ′, x),

where we fix the arbitrary parameter C :

C = M
2
+
γ

2
.

Let us make Fourier transformation in s:

ϕ(z , x) =

∫
ds exp (isz)f̃ (s, x),

P

∫
ds ds ′ exp {i(s − s ′)z}

(s − s ′)2
exp (is ′z) f̃ (s ′, x) = −π|z |ϕ(z , x).

Thus we obtain the following equation:
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(
−52

⊥ − ∂2
z +

β2

4
x2 +

π

2
γ1|z |

)
ϕ(z , x) =

m2

4
ϕ(z , x).

We can write ϕ(z , x) = ϕ1(x)ϕ2(z), where ϕ1(x) and ϕ2(z)
satisfy the following equations:

(
−52

⊥ +
β2

4
x2

)
ϕ1(x) =

m2
1

4
ϕ1(x),

(
−∂2

z +
π

2
γ1|z |

)
ϕ2(z) =

m2
2

4
ϕ2(z), m2 = m2

1 + m2
2.

The first equation is the equation of 2-dimensional quantum
harmonic oscillator and the second one is the Airy equation.
Therefore we know the spectrum of m2

1 and m2
2:

m2
1(n1, n2) = 4β

∑

k=1,2

(
nk +

1

2

)
, m2

2(n3) = 4
(πγ1

2

) 2
3 |ζn3 |,

where ζn are zeros of corresponding Airy eigenfunctions.
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For this roots we have the following: |ζ0| ≈ 1 and for n > 0

|ζn| ≈
(

3π

4

(
n +

1

2

)) 2
3

.

Thus m2
2(n3 = 0) ≈ 4

(πγ1

2

) 2
3
, m2

2(n3 > 0) ≈ 4

(
π2γ1

8

(
n +

1

2

)) 2
3

.

In order to introduce the classification of the states in orbital
momentum l let us take

m2
1(n1 = n2 = 0) = m2

2(n3 = 0), i.e.
(πγ1

2

) 2
3

=
β

2

and try to approximate the Airy equation for lowest eigenstates by
oscillator equation. This gives a possibility to restore 3-dim
spherical symmetry because we get the 3-dim oscillator equation
with this spectrum:

m2 = 8β

(
n +

l

2
+

3

4

)
.
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m2 = 8β

(
n +

l

2
+

3

4

)
.

The experimental meson spectrum can be approximated using the
following formula by Sergey Afonin

m2 = [1.1(n + l) + 0.7]GeV 2,

where the lowest state corresponds to ρ-meson. We can compare
these spectra. We suppose that the discrepancy in orbital
momentum l is due to rather simple description of the gluon
”string” so that we assume a possibility to add l/2 to the spectral
equation by hand. In this case we can identify our parameter 8β
with the 1.1GeV 2R2 and again fit the parameter C so that the
lowest state of our spectrum corresponds to 0.7GeV 2.
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Thank you for your attention!
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