

Baryon-baryon scattering in manifestly Lorentz-invariant formulation of ChPT

Xiu-Lei Ren (任修磊)

Institute of theoretical physics II, Ruhr-Universität Bochum

In collaboration with:

Vadim Baru (Bonn U.), Evgeny Epelbaum (RUB), and Jambul Gegelia(RUB)

Outline

Introduction

Theoretical Framework

Results and discussion

Baryon-baryon interactions from QCD RUB

Residual quark-gluon strong interaction

Understood from Quantum Chromo-Dynamics

At low-energy region

- Running coupling constant $\alpha_s > 1$
- Nonperturbative QCD -- unsolvable

Studies of BB interactions

- Phenomenological models (since 1935~)
- Lattice QCD simulation (since 2010~)
- Chiral effective field theory (since 1990~)

Baryon-baryon interactions from QCD RUB

Residual quark-gluon strong interaction

Understood from Quantum Chromo-Dynamics

At low-energy region

- Running coupling constant $\alpha_s > 1$
- Nonperturbative QCD -- unsolvable

Studies of BB interactions

- Phenomenological models (since 1935~)
- Lattice QCD simulation (since 2010~)
- Chiral effective field theory (since 1990~)

BB interaction in ChEFT

Weinberg's proposal S. Weinberg, PLB251(1990)288-292; NPB363(1991)3-18

NN potential calculated in chiral perturbation theory order by order

$$V(p',p) = V_{\rm LO} + V_{\rm NLO} + V_{\rm NNLO} + \cdots$$

Weinberg's Power Counting: $\mathcal{O}(Q^0)$ $\mathcal{O}(Q^2)$ $\mathcal{O}(Q^3)$ Q: small external momenta

 Scattering amplitude obtained by solving the Schrödinger or Lippmann-Schwinger equations

$$T(p',p) = V(p',p) + \int_0^\infty \frac{k^2 dk}{(2\pi)^3} V(p',k) \frac{m}{p^2 - k^2 + i\epsilon} T(k,p) \,.$$

BUT, e.g., a series of ladder diagrams

M. Savage arXiv:nucl-th/9804034

WPC is inconsistent with renormalization, even at leading order (LO)!

Possible solutions (still controversial...)

- Keep cutoff lower than hard scale: $\Lambda < \Lambda_{\chi PT} \sim 1 \text{ GeV}$
 - ✓ WPC is consistent G.P. Lepage, nucl-th/9706029. E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - ✓ Achieve great successes

P. F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339 E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1

Possible solutions (still controversial...)

- Keep cutoff lower than hard scale: $\Lambda < \Lambda_{\chi PT} \sim 1 \, {\rm GeV}$
 - ✓ WPC is consistent G.P. Lepage, nucl-th/9706029. E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - ✓ Achieve great successes
 E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773
 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1
- Kaplan, Savage, and Wise (KSW) power counting
 - ✓ Treat the exchange of pions perturbatively D.B. Kaplan, M.J. Savage, M.B. Wise, PLB424(1998)390
 - ✓ Fail to converge in certain spin-triplet channels S. Fleming, et al., Nucl.Phys. A677 (2000) 313
 - ✓ Recently, some improvements of KSW proposed by Kaplan D.B. Kaplan, arXiv: 1905.07485

Possible solutions (still controversial...)

- Keep cutoff lower than hard scale: $\Lambda < \Lambda_{\chi PT} \sim 1 \, {\rm GeV}$
 - ✓ WPC is consistent G.P. Lepage, nucl-th/9706029. E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - ✓ Achieve great successes
 E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773
 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1
- Kaplan, Savage, and Wise (KSW) power counting
 - ✓ Treat the exchange of pions perturbatively D.B. Kaplan, M.J. Savage, M.B. Wise, PLB424(1998)390
 - ✓ Fail to converge in certain spin-triplet channels S. Fleming, et al., Nucl.Phys. A677 (2000) 313
 - ✓ Recently, some improvements of KSW proposed by Kaplan D.B. Kaplan, arXiv: 1905.07485
- Modified WPC with renormalization group invariance (RGI)
 - Rearrange the higher order contact terms to the lower chiral order
 A. Nogga, et al., PRC72(2005)054006 M. C. Birse, PRC74(2006)014003 M. Pavon Valderrama, PRC72(2005) 054002.
 B. Long and C.-J. Yang, PRC84(2011)057001 ...

Possible solutions (still controversial...)

- Keep cutoff lower than hard scale: $\Lambda < \Lambda_{\chi PT} \sim 1 \, {\rm GeV}$
 - ✓ WPC is consistent G.P. Lepage, nucl-th/9706029. E.Epelbaum, J.Gegelia, Ulf-G. Meißner, NPB925(2017)161
 - ✓ Achieve great successes
 E. Epelbaum, H.-W. Hammer, Ulf-G. Meißner, Rev. Mod. Phys. 81 (2009) 1773
 R. Machleidt, D. R. Entem, Phys. Rept. 503 (2011) 1
- Kaplan, Savage, and Wise (KSW) power counting
 - ✓ Treat the exchange of pions perturbatively D.B. Kaplan, M.J. Savage, M.B. Wise, PLB424(1998)390
 - ✓ Fail to converge in certain spin-triplet channels S. Fleming, et al., Nucl.Phys. A677 (2000) 313
 - ✓ Recently, some improvements of KSW proposed by Kaplan D.B. Kaplan, arXiv: 1905.07485
- Modified WPC with renormalization group invariance (RGI)
 - Rearrange the higher order contact terms to the lower chiral order
 A. Nogga, et al., PRC72(2005)054006 M. C. Birse, PRC74(2006)014003 M. Pavon Valderrama, PRC72(2005) 054002.
 B. Long and C.-J. Yang, PRC84(2011)057001 ...
- Lorentz invariant framework to reformulate chiral force
 - ✓ The fundamental symmetry of our nature

Relativistic studies of chiral force

RUB

Talk by Prof. Li-Sheng Geng @ Session4, 8/20

Relativistic chiral force (covariant form)

XLR, et al., CPC42(2018)014103; K.-W. Li, et al., CPC42(2018)014105; K.-W. Li, et al., PRC98(2018)065203 ...

Here, we focus on the renormalization issue of chiral force

Modified Weinberg approach
 E. Epelbaum and J. Gegelia_PLB716(2012)338-344

- Based on the Lorentz invariant chiral Lagrangians
- Adopt WPC to expand the NN potential and the relativistic corrections are perturbatively included

 $V(p',p) = \bar{u}_1 \bar{u}_2 \mathscr{A} u_1 u_2$ with $u = u_0 + u_1 + u_2 + \cdots$

• Use the Kadyshevsky equation to calculate the scattering T-matrix

$$T(p',p) = V(p',p) + \int \frac{k^2 dk}{(2\pi)^3} \frac{m^2}{2\sqrt{k^2 + m^2}} \frac{1}{\sqrt{p^2 + m^2} - \sqrt{k^2 + m^2} + i\epsilon} T(k,p) \,.$$

V. Kadyshevsky, NPB (1968)

- ✓ Milder ultraviolet behavior than in LS equation
- Result in a renormalizable LO potential !
 - ✓ All divergences absorbed in parameters of the LO potential

In this work

- Based on the idea of modified Weinberg approach, we proposed a systematic framework within the old-fashioned (time-ordered) perturbation theory using the Lorentz invariant chiral Lagrangians
 - Derive the rules of time-ordered diagrams, especially for the rules with spin-1/2 fermion (as far as we know, there was no such rules in the literatures)
 - Extend the framework from the nucleon-nucleon scattering to the baryon-baryon sector with different strangeness
 - ✓ Calculate the NN and YN scatterings up to leading order
 - ✓ Discuss the renormalization issue of our obtained potentials

V.Baru, E.Epelbaum, J. Gegelia, XLR, arXiv:1905.02116 XLR, E.Epelbaum, J.Gegelia, Hyperon-nucleon scattering, in preparation

Theoretical framework

Time-ordered perturbation theory (TOPT)

S. Weinberg, Phys.Rev.150(1966)1313

Definition G.F. Sterman, "An introduction to quantum field theory", Cambridge (1993)

- ✓ Re-express the Feynman integral in a form that makes the connection with onshell state explicit. This form is called TOPT or old-fashioned PT
- ✓ (In short) Instead the propagators for internal lines as the energy denominators for intermediate states
- Advantages
 - Explicitly show the unitarity
 - One-to-one relation between internal lines and intermediate states
 - ✓ Easily to tell the contributions of a particular diagram
- Derive the rules for time-ordered diagrams
 - Perform Feynman integrations over the zeroth components of the loop momenta
 - Decompose Feynman diagram into sums of time-ordered diagrams
 - Match to the rules of time-ordered diagrams

Diagram rules in TOPT

External lines

- Incoming (outgoing) baryon lines: $u(p) [\bar{u}(p')]$ Dirac spinors
- Internal lines
 - Pseudo-scalar meson lines: $\frac{1}{2\omega(q_i, M_i)} \qquad \omega(q, M) = \sqrt{q^2 + M^2}$
 - Baryon lines: $\frac{m_i}{\omega(p_i,m)} \sum u(p_i)\bar{u}(p_i)$
 - Anti-baryon lines: $\frac{m_i}{\omega(p_i, m_i)}$

$$\frac{1}{m}\sum u(p_i)\bar{u}(p_i) - \gamma_0 \qquad \gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}$$

- Interaction vertices
 - Follow the standard Feynman rules
 - Take care of zeroth components of momenta p^0
 - ✓ Replaced as $\omega(p, m)$ for particle
 - ✓ Replaced as $-\omega(p,m)$ for antiparticle

Intermediate state: a set of lines between any two vertices

$$\sum_{\mathbf{z}} [E - \sum_{i} \omega(p_i, m_i) + i\epsilon]^{-1}$$

E is the total energy of the system

RUB

Baryon-baryon scattering in TOPT RUB

Scattering amplitude T

- Potential V: sum up the two-particle irreducible time-ordered diagrams
 - Employ the Weinberg power counting to perturbatively calculate potential

$$V = \begin{pmatrix} V_{NN,NN} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & V_{\Lambda N,\Lambda N} & V_{\Lambda N,\Sigma N} & 0 & 0 & 0 & 0 \\ 0 & V_{\Sigma N,\Lambda N} & V_{\Sigma N,\Sigma N} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & V_{\Lambda \Lambda,\Lambda \Lambda} & V_{\Lambda \Lambda,\Xi N} & V_{\Lambda \Lambda,\Sigma \Sigma} & V_{\Lambda \Lambda,\Sigma \Lambda} \\ 0 & 0 & 0 & V_{\Sigma N,\Lambda \Lambda} & V_{\Xi N,\Lambda \Lambda} & V_{\Xi N,\Sigma \Sigma} & V_{\Xi N,\Sigma \Lambda} \\ 0 & 0 & 0 & V_{\Sigma \Sigma,\Lambda \Lambda} & V_{\Sigma \Sigma,\Sigma N} & V_{\Sigma \Sigma,\Sigma \Sigma} & V_{\Sigma \Sigma,\Sigma \Lambda} \\ 0 & 0 & 0 & 0 & V_{\Sigma \Lambda,\Lambda \Lambda} & V_{\Sigma \Lambda,\Sigma N} & V_{\Sigma \Lambda,\Sigma \Lambda} \end{pmatrix}$$
S=0
S=-1

• Two-body Green functions *G*:

$$G_{ij}(E) = \frac{1}{\omega(k, m_i) \,\omega(k, m_j)} \frac{m_i m_j}{E - \omega(k, m_i) - \omega(k, m_j) + i\epsilon}$$

V. Kadyshevsky, NPB (1968)

- This is the generalized Kadyshevsky propagator of NN scattering
- ✓ **SELF-CONSISTENTLY obtained** in TOPT!

Leading order contributions in TOPT

Time-ordered diagrams at LO

RUB

Lorentz-invariant effective Lagrangians

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\phi} + \mathcal{L}_{\phi\mathrm{B}} + \mathcal{L}_{\mathrm{BB}} + \cdots$$

• Mesonic Lagrangian J. Gasser and H. Leutwyler, Ann. Phys. 158, 142(1984)

$$\mathcal{L}_{\phi}^{(2)} = \frac{F_0^2}{4} \operatorname{Tr} \{ u_{\mu} u^{\mu} + \chi_+ \}$$

- Meson-baryon Lagrangian A. Krause, Helv. Phys. Acta 63 (1990) 3-70 $\mathcal{L}_{\phi B}^{(1)} = \operatorname{Tr}\left\{\bar{B}\left(i\gamma_{\mu}D^{\mu}-m\right)B\right\} + \frac{D/F}{2}\operatorname{Tr}\left\{\bar{B}\gamma_{\mu}\gamma_{5}[u^{\mu},B]_{\pm}\right\}$
- Baryon-baryon Lagrangian H.Polinder, J. Haidenbauer, Ulf-G. Meißner, NPA779(2006)244-266

$$\mathcal{L}_{BB}^{(0)} = C_i^1 \operatorname{Tr} \left\{ \bar{B}_{\alpha} \bar{B}_{\beta} \left(\Gamma_i B \right)_{\beta} \left(\Gamma_i B \right)_{\alpha} \right\} + C_i^2 \operatorname{Tr} \left\{ \bar{B}_{\alpha} \left(\Gamma_i B \right)_{\alpha} \bar{B}_{\beta} \left(\Gamma_i B \right)_{\beta} \right\} + C_i^3 \operatorname{Tr} \left\{ \bar{B}_{\alpha} \left(\Gamma_i B \right)_{\alpha} \right\} \operatorname{Tr} \left\{ \bar{B}_{\beta} \left(\Gamma_i B \right)_{\beta} \right\}, \Gamma_1 = 1, \quad \Gamma_2 = \gamma^{\mu}, \quad \Gamma_3 = \sigma^{\mu\nu}, \quad \Gamma_4 = \gamma^{\mu} \gamma_5, \quad \Gamma_5 = \gamma_5.$$

Leading order potentials

Contact baryon-baryon interaction

• S = 0, *NN* single channel

 $V_{0,C}^{IJ,KL} = C_{S}(\bar{u}_{K} u_{I})(\bar{u}_{L} u_{J}) + C_{A}(\bar{u}_{K} \gamma_{5} u_{I})(\bar{u}_{L} \gamma_{5} u_{J}) + C_{V}(\bar{u}_{K} \gamma_{\mu} u_{I})(\bar{u}_{L} \gamma^{\mu} u_{J})$ $+ C_{AV}(\bar{u}_{K} \gamma_{\mu} \gamma_{5} u_{I})(\bar{u}_{L} \gamma^{\mu} \gamma_{5} u_{J}) + C_{T}(\bar{u}_{K} \sigma_{\mu\nu} u_{I})(\bar{u}_{L} \sigma^{\mu\nu} u_{J})$

XLR, K.-W. Li, L.-S. Geng, B. Long, P. Ring, J. Meng, CPC 42 (2018) 014103

- ✓ Contains higher order contributions according to WPC
- ✓ Perform the expansion for the baryon energies $\sqrt{\omega(p,m) + m} = \sqrt{2m} + O(p^2)$

$$V_{LO,C}^{IJ,KL} = (C_S + C_V) - (C_{AV} - 2C_T)\vec{\sigma}_1 \cdot \vec{\sigma}_2$$

Same as the non-relativistic potential S. Weinberg, PLB251(1990)288-292

• S = -1, ΛN - ΣN two coupled channels

✓ Expressions are the same as the non-relativistic potential

H.Polinder, J. Haidenbauer, Ulf-G. Meißner, NPA779(2006)244-266

• S = -2, $\Lambda\Lambda$, ΞN , $\Sigma\Sigma$, $\Sigma\Lambda$ four coupled channels

Expressions are the same as the non-relativistic potential

RUB

Leading order potentials

RUB

One-meson-exchange contribution

$$\begin{split} V_{0,M_P}^{IJ,KL} &= \frac{f_{IKP}f_{JLP}\mathcal{I}_{IJ,KL}}{2\,\omega(q,M_P)} \left[\frac{(\bar{u}_I\gamma_\mu\gamma_5 q^\mu u_K)(\bar{u}_J\gamma_\nu\gamma_5 q^\nu u_L)}{\omega(q,M_P) + \omega(p_K,m_K) + \omega(p_J,m_J) - E - i\,\epsilon} \right. \\ &+ \frac{(\bar{u}_I\gamma_\mu\gamma_5 q^\mu u_K)(\bar{u}_J\gamma_\nu\gamma_5 q^\nu u_L)}{\omega(q,M_P) + \omega(p_L,m_L) + \omega(p_I,m_I) - E - i\,\epsilon} \right] \end{split}$$

- Contains higher order contributions according to WPC
- Perform the expansion for the baryon energies

$$\sqrt{\omega(p,m)+m} = \sqrt{2m} + \mathcal{O}(p^2)$$

✓ Keep the baryon energies in denominator (consistent with Kadysevsky eq.)

$$\begin{split} V_{\text{LO},M_{P}}^{IJ,KL} &= -\frac{f_{IKP}f_{JLP}\mathcal{I}_{IJ,KL}}{2\,\omega(q,M_{P})} \left[\frac{1}{\omega(q,M_{P}) + \omega(p_{K},m_{K}) + \omega(p_{J},m_{J}) - E - i\,\epsilon} \right. \\ &+ \frac{1}{\omega(q,M_{P}) + \omega(p_{L},m_{L}) + \omega(p_{I},m_{I}) - E - i\,\epsilon} \left] \frac{(m_{I} + m_{K})\,(m_{J} + m_{L})}{\sqrt{m_{I}m_{J}m_{K}m_{L}}} \right. \\ &\times \frac{(m_{K}\vec{\sigma}_{1}\cdot\vec{p}_{I} - m_{I}\vec{\sigma}_{1}\cdot\vec{p}_{K})\,(m_{L}\vec{\sigma}_{2}\cdot\vec{p}_{J} - m_{J}\vec{\sigma}_{2}\cdot\vec{p}_{L})}{\sqrt{\omega(p_{I},m_{I}) + m_{I}}\,\sqrt{\omega(p_{J},m_{J}) + m_{J}}\,\sqrt{\omega(p_{K},m_{K}) + m_{K}}\,\sqrt{\omega(p_{L},m_{L}) + m_{L}}}. \end{split}$$

It has a milder ultraviolet behaviour than the non-relativisitc OMEP

Behavior of long-range potential

Ultraviolet convergent!

Iteration of our OMEP

Scattering amplitude from OMEP is cutoff independent

$$T_M = V_M + V_M G T_M$$

Renormalizable!

Phase shifts: cutoff-independent RUB

NN single channel

NN couple channels

• ΛN - ΣN couple channels

Phase shifts of NN scattering

RUB

Leading order chiral NN potential

$$\begin{split} V_{C} &= C_{S} - C_{T} \, \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ V_{\pi} \left(\vec{p}', \vec{p} \right) \;=\; -\frac{g_{A}^{2}}{4 \, F_{0}^{2}} \, \frac{\vec{\tau}_{1} \cdot \vec{\tau}_{2}}{\sqrt{\left(\vec{p} - \vec{p}' \right)^{2} + M_{\pi}^{2}}} \frac{4m_{N}^{2}}{\left(m_{N} + \sqrt{\vec{p}^{2} + m_{N}^{2}} \right) \left(m_{N} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} \right)} \\ & \times \; \frac{\left[\vec{\sigma}_{1} \cdot \left(\vec{p} - \vec{p}' \right) \right] \left[\vec{\sigma}_{2} \cdot \left(\vec{p} - \vec{p}' \right) \right]}{\sqrt{\left(\vec{p} - \vec{p}' \right)^{2} + M_{\pi}^{2}} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} - E - i \, \epsilon}, \end{split}$$

Phase shifts at LO with cutoff → ∞

Phases shift of NN scattering

Leading order chiral NN potential

$$\begin{split} V_{C} &= C_{S} - C_{T} \, \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \\ V_{\pi} \left(\vec{p}', \vec{p} \right) \;=\; -\frac{g_{A}^{2}}{4 \, F_{0}^{2}} \, \frac{\vec{\tau}_{1} \cdot \vec{\tau}_{2}}{\sqrt{\left(\vec{p} - \vec{p}' \right)^{2} + M_{\pi}^{2}}} \frac{4m_{N}^{2}}{\left(m_{N} + \sqrt{\vec{p}^{2} + m_{N}^{2}} \right) \left(m_{N} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} \right)} \\ & \times \; \frac{\left[\vec{\sigma}_{1} \cdot \left(\vec{p} - \vec{p}' \right) \right] \left[\vec{\sigma}_{2} \cdot \left(\vec{p} - \vec{p}' \right) \right]}{\sqrt{\left(\vec{p} - \vec{p}' \right)^{2} + M_{\pi}^{2}} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} + \sqrt{\vec{p}'^{2} + m_{N}^{2}} - E - i \, \epsilon}, \end{split}$$

Phase shifts at LO with cutoff → ∞

¹S₀ and ³P₀: Large differences

RUB

- At least a part of the subleading corrections must be treated nonperturbatively
- For simplicity, we choose to promote the NLO contact terms up to LO.

Role of NLO contact terms in renormalization RUB

\Box Take ³P₀ partial wave for example

- Promote the NLO contact term to the lowest order
- Potential: $V_{3P0}(p',p) = Cp'p + V_{\pi}$ Renormalizable or not?

Amplitude: E.Epelbaum, A.M. Gasparyan, J. Gegelia, and H. Krebs., EPJA51(2015)71

$$T_{3P0} = T_{\pi} + \frac{[(1 + T_{\pi}G)p'][p(1 + GT_{\pi})]}{C^{-1} - pGp' - pGT_{\pi}Gp'}$$

It is cutoff dependent, not renormalizable!

Cutoff dependence!

RUB

From the point view of Renormalization Group Invariance C.-J. Yang_arXiv:1905.12510

- The ³P₀ potential is not singular, and therefore does not require a contact term to achieve RG-invariance.
- Promoting a contact term to LO in the non-perturbative treatment will destroy the RG, unless extra care is taken to further subtract the divergences.

Amplitude renormalization

RUB

Use subtractive renormalization to subtract all the divergences in loop diagrams J. Collins, Renormalization, Cambridge Uni. Press E. Epelbaum, et al., EPJA51(2015)71

$$pGp')^{R} = \frac{m^{2}p^{2}}{4\pi^{2}E} \left[2p\left(\sinh^{-1}\frac{p}{m} - i\pi\right) - \pi m\right) + \frac{m^{2}p^{2}}{8\pi^{2}\sqrt{m^{2} - \mu^{2}}} \left(2\mu\left(\sin^{-1}\frac{\mu}{m} - \pi\right) + \pi m \right].$$

Renormalized amplitude: $T_{3P0}^{R} = T_{\pi} + \frac{[(1 + T_{\pi}G)p'][p(1 + GT_{\pi})]}{(C^{R})^{-1} - (pGp')^{R} - pGT_{\pi}Gp'}$

ΛN - ΣN scattering

RUB

□ ³P₀ phase shifts up to LO

□ In order to improve the description of ³P₀ phases

NLO contact terms are promoted to LO

$$V_{\text{LO}}^{3P_0}(p_1', p_2'; p_1, p_2) = V_C(p_1', p_2'; p_1, p_2) + V_{\text{LO}, M_P}^{IJ, KL}$$
$$V_C = \xi(p_1', p_2') C\xi(p_1, p_2), \quad C = \begin{pmatrix} C_{\Lambda N, \Lambda N} & C_{\Lambda N, \Sigma N} \\ C_{\Sigma N, \Lambda N} & C_{\Sigma N, \Sigma N} \end{pmatrix}, \quad \xi(p_1, p_2) = \begin{pmatrix} p_1 & 0 \\ 0 & p_2 \end{pmatrix}.$$

Use the subtractive renormalization to achieve a renormalizable potential

ΛN - ΣN scattering

□ ³P₀ phase shifts

XLR, E.Epelbaum, J.Gegelia, Hyperon-nucleon scattering, in preparation

Summary and perspectives

We proposed a systematic framework to formulate the baryon-baryon interactions based on the time-ordered perturbation theory using the Lorentz invariant effective Lagrangian

- Obtained the rules of time-ordered diagrams with spin-1/2 fermions
- Derived the generalized Kadyshevsky equation self-consistently
- Calculated the baryon-baryon interactions up to leading order, which is renormalizable
- Achieved a rather good description of ³P₀ phases by promoting the NLO contact terms in a renormalizable way
- Higher order studies are in progress
 - Perturbatively/Non-perturbatively include NLO/NNLO contributions
 - Keep the momentum cutoff $\Lambda < \Lambda_{\gamma PT}$ or $\Lambda \sim \infty$

THANK YOU FOR YOUR ATTENTION!

Backup slides

1/r^2 potential

Whether 1/r² potential has a unique solution depends on the strengths

$$V(r) = \frac{\hbar^2}{m} \frac{c}{r^2}$$
 with $r \equiv |\mathbf{r}|$ $c \equiv -\frac{1}{4} - v^2$

- For the couplings larger than critical value (-1/4) equations do not have unique solutions.
- For the couplings smaller than critical value (-1/4) equations have unique solutions.
- For potentials more singular than 1/r², the equations do not have unique solutions.

Subtractive renormalization

Subtractive renormalization of the considered problem corresponds to the inclusion of contributions of an infinite number of counter terms generated by bare parameters of the effective Lagrangian.