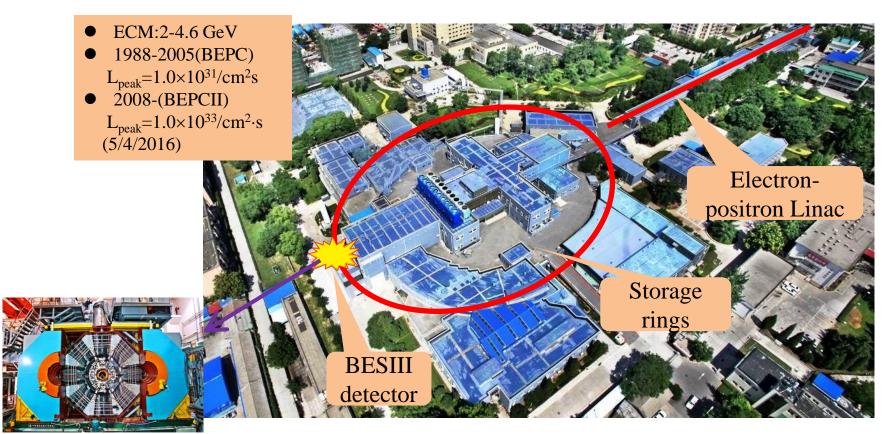
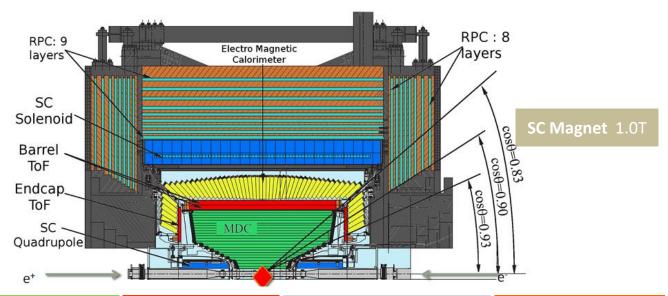


Observation of New Charmonium Decays


Guangrui Liao (廖广睿)
(On behalf of the BESIII Collaboration)
Guangxi Normal University

The 18th International Conference on Hadron Spectroscopy and Structure Guilin, China, August 2019


Outline

- >BEPCII/BESIII
- ➤ Data set at BESIII
- >Physics results
 - $\psi(3686) \to \Xi^{-}(1530) \overline{\Xi}^{+}(1530)$ and $p\bar{p}\eta'$
 - $h_c \rightarrow \text{hadrons}$
 - $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$, $\omega \phi$ and $4K_s^0$
 - $\eta_c \to \omega \omega$, $K^+K^-\pi^0$, $K_s^0K^{\pm}\pi^{-/+}$, $2(\pi^+\pi^-\pi^0)$ and $p\bar{p}$
- **>**Summary

BEPCII/BESIII

BEPCII/BESIII

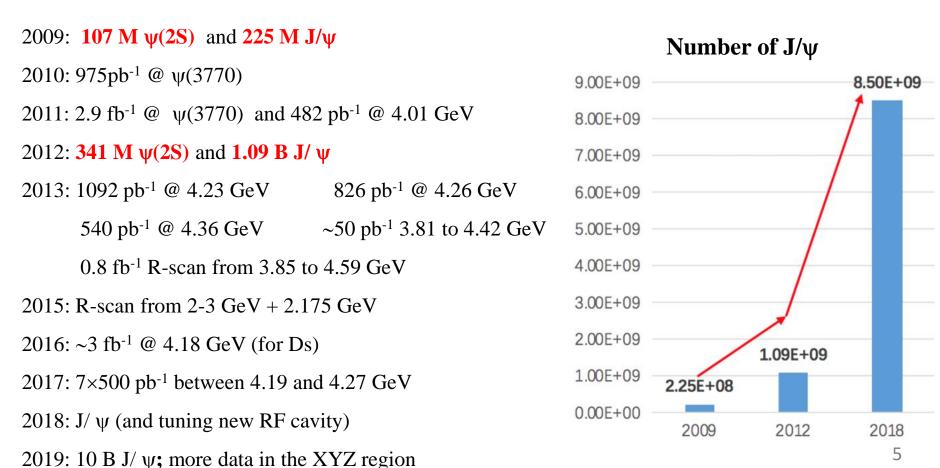
Main Drift Chamber Small cell, 43 layer σ_{xy} =130 μ m, dE/dx~6% σ_{n}/p = 0.5% at 1 GeV

Time Of Flight

Plastic scintillator

 $\sigma_{\rm T}$ (barrel): 80 ps $\sigma_{\rm T}$ (endcap): 110 ps

(endcap update with MRPC σ_T :65 ps)


Electromagnetic Calorimeter

CsI(TI): L=28 cm $(15X_0)$

Energy range: 0.02-2GeV

Barrel σ_E 2.5%, σ_I 6mm Endcap σ_E 5.0%, σ_I 9mm Muon Counter
Resistive plate
chamber
Barrel: 9 layers
Endcaps: 8 layers σ_{spatial} : 1.48 cm

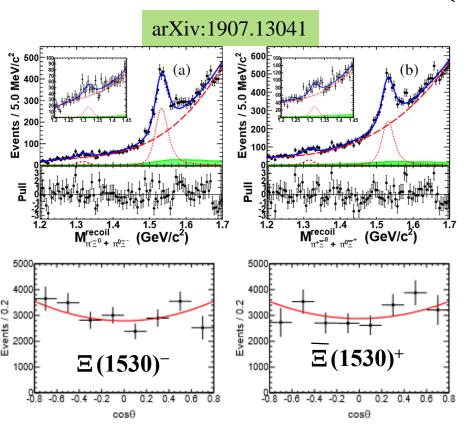
BESIII data set

Observation of $\psi(3686) \to \Xi(1530)^{-}\Xi(1530)^{+}$ and $\Xi(1530)^{-}\Xi^{+}$

Int. J. Mod. Phys. A 24, S1

- The decays of charmonium into octet-decuplet baryonic pairs are forbidden. PRD14, 852
- \triangleright J/ψ into octet-decuplet baryonic pairs has been observed by DM2 and BESIII, but there is no observation in ψ(3686). Nucl. Phys. B 292, 670 PRD 87, 052007
- > Study the angular distributions of the final states

$$dN/d(\cos\theta) \propto 1 + \alpha \cos^2\theta$$


Int. J. Mod. Phys. A2,249

• Theory: $0 < \alpha < 1$

PLB 770, 217

• Experiment: $\alpha < 0$ in $J/\psi \rightarrow \Sigma^{0}\overline{\Sigma}^{0}$ and $J/\psi \rightarrow \Sigma(1385)\overline{\Sigma}(1385)$ *PLB 632, 181*

Observation of $\psi(3686) \rightarrow \Xi(1530)^{-}\Xi(1530)^{+}$ and $\Xi(1530)^{-}\Xi^{+}$

Branching fractions:

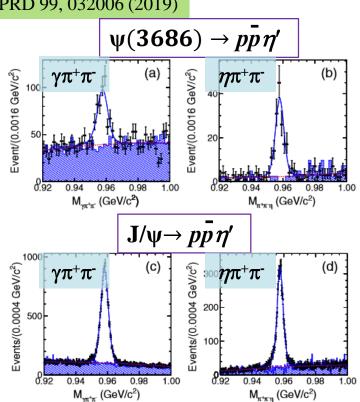
1)
$$\psi(3686) \rightarrow \Xi(1530)^{-}\overline{\Xi}(1530)^{+}$$
:

BF=
$$(11.45\pm0.40\pm0.59)\times10^{-5}$$

2)
$$\psi(3686) \rightarrow \Xi (1530)^{-}\Xi^{+}$$
:

BF=
$$(0.70\pm0.11\pm0.04)\times10^{-5}$$

SU(3) flavor symmetry is broken in $\psi(3686)$


$$> \alpha = 0.40 \pm 0.24 \pm 0.06$$

Consistent with theoretical prediction: 0.31

PRD 25,1345

Observation of $\psi(3686) \rightarrow p\overline{p}\eta'$ and improved measurement of $J/\psi \rightarrow pp \eta'$

PRD 99, 032006 (2019)

> Signal yields extracted from a simultaneous fit to the $\gamma \pi^+ \pi^-$ and $\eta \pi^+ \pi^-$ invariant mass spectra

$$\mathcal{B}(\psi(3686) \to p\bar{p}\eta') = (1.10 \pm 0.10 \pm 0.08) \times 10^{-5}$$

 $\mathcal{B}(J/\psi \to p\bar{p}\eta') = (1.26 \pm 0.02 \pm 0.07) \times 10^{-4}$

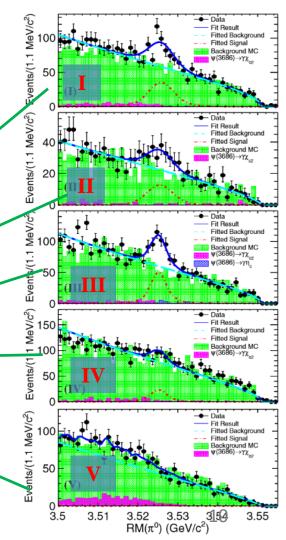
 $\rightarrow \eta - \eta'$ mixing angle $\psi(3686) \rightarrow p\overline{p}\eta/p\overline{p}\eta' : \theta_{\eta-\eta'} = -24^{\circ} \pm 11^{\circ}$ $J/\psi \rightarrow p\overline{p}\eta/p\overline{p}\eta'$: $\theta_{\eta-\eta'} = -24^{\circ} \pm 9^{\circ}$ QCD-inspired calculations of –(17°~10°)

PRD30,2333

$h_c \rightarrow \text{hadrons}$

1/a/(1C) --

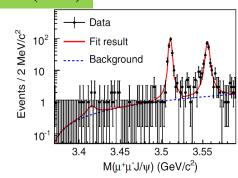
- \triangleright Knowledge on decay behavious of h_c still sparse since discovery in 2005.
- ➤ Only few decay modes have been observed.
- More h_c hadronic decay modes are needed to shed light on the h_c decay mechanism.

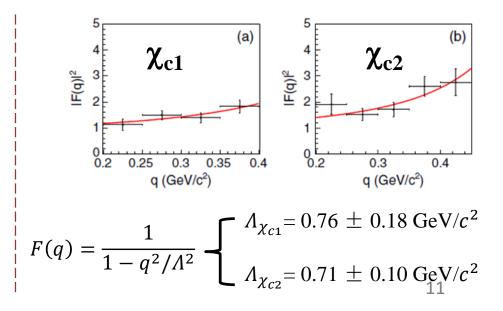

$J/\psi(1S)\pi\pi$	not seen	
$\rho \overline{\rho}$	< 1.5	
$\pi^{+}\pi^{-}\pi^{0}$	< 2.2	\times 10 ⁻³
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})$) %
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9	%
	Radiative decays	
$\gamma\eta$	(4.7±2.1)	$) \times 10^{-4}$
$\gamma \eta'(958)$	(1.5 ± 0.4)	$) \times 10^{-3}$
$\gamma \eta_c(1S)$	(51 ±6) %

PDG2018

$h_c \rightarrow \text{hadrons}$

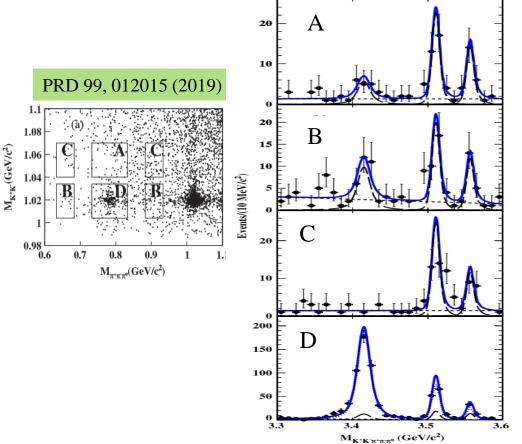
Five h_c hadronic decays have been studied at BESIII with 448 M ψ (3686) events, .


PRD 99 , (072008 (2019)		
Mode		$\mathcal{B}_{h_c}(10^{-3})$	S.S. $\mathcal{B}_{h_c}^{\text{PDG}}(10^{-3})$
I	$h_c \rightarrow p \bar{p} \pi^+ \pi^-$	$2.89 \pm 0.32 \pm 0.55$	7.4σ
II	$h_c o \pi^+\pi^-\pi^0$	$1.60 \pm 0.40 \pm 0.32$	4.6σ <2.2
III	$h_c \to 2(\pi^+\pi^-)\pi^0$	$7.44 \pm 0.94 \pm 1.52$	9.1σ 22^{+8}_{-7}
IV	$h_c \to 3(\pi^+\pi^-)\pi^0$	$4.65 \pm 2.17 \pm 1.08$	2.1σ < 29
	, ,	< 8.7	
V	$h_c \rightarrow K^+ K^- \pi^+ \pi^-$	< 0.6	ĸ


Study of electromagnetic Dalitz decays $\chi_{c,I} \rightarrow \mu^+ \mu^- J/\psi$

- > Understand the intrinsic structure of hadrons, test to theoretical models.
- \triangleright Measurement of the branching fractions of $\chi_{cJ} \rightarrow \mu^+ \mu^- J/\psi$ are related to the TFF.

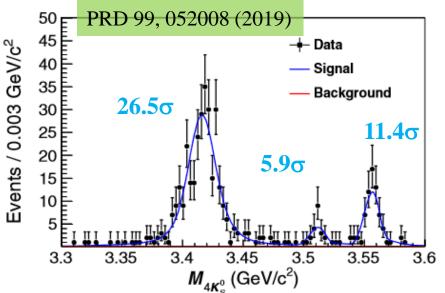
PRD99, 051101 (2019)


Decay mode	Yields	Branching fraction
$\frac{1}{\chi_{c0} \to \mu^+ \mu^- J/\psi}$	<9.5	$< 2.0 \times 10^{-5}$
$\chi_{c1} \rightarrow \mu^{+}\mu^{-}J/\psi$ $\chi_{c2} \rightarrow \mu^{+}\mu^{-}J/\psi$	221.9 ± 15.3 218.9 ± 16.1	$(2.51 \pm 0.18 \pm 0.20) \times 10^{-4}$ $(2.33 \pm 0.18 \pm 0.29) \times 10^{-4}$

Observation of OZI-suppressed decays $\chi_{cI} \rightarrow \omega \phi$

- The hadronic χ_{cJ} decays provide a prospective laboratory to limit theoretical parameters and test various phenomenological models.
- $ightharpoonup \chi_{cJ}
 ightharpoonup VV$ decays are ideal objects to exploit the glueball-qqbar mixing and quark-gluon coupling of strong interaction in the low energy region.
- $\triangleright \chi_{cJ} \rightarrow \omega \varphi$ decay modes are doubly OZI suppressed.

Observation of OZI-suppressed decays $\chi_{cI} \rightarrow \omega \phi$


Mode	$\mathcal{B}(\chi_{cJ} o \omega \phi)$
$\chi_{c0} \to \omega \phi$	$(13.84 \pm 0.70 \pm 1.08) \times 10^{-5}$
$\chi_{c1} \to \omega \phi$	$(2.80 \pm 0.32 \pm 0.30) \times 10^{-5}$
$\chi_{c2} \to \omega \phi$	$(1.00 \pm 0.25 \pm 0.14) \times 10^{-5}$

- $ho \chi_{c0}
 ightharpoonup \omega \varphi$: improved precisions
- $\succ \chi_{c1} \rightarrow \omega \Phi$: observed for the first time with a 12.3σ
- $> \chi_{c2} \rightarrow \omega \varphi$: strong evidence with a 4.8 σ
- The ratios are one order of magnitude PRD81,074006 larger than theoretical predictions

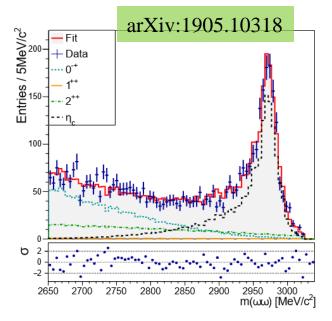
$$\begin{cases} \frac{\mathcal{B}(\chi_{c1} \to \omega\phi)}{\mathcal{B}(\chi_{c1} \to \omega\omega)} = (4.67 \pm 0.78) \times 10^{-2} \\ \frac{\mathcal{B}(\chi_{c1} \to \omega\phi)}{\mathcal{B}(\chi_{c1} \to \phi\phi)} = (5.60 \pm 1.01) \times 10^{-2} \end{cases}$$

Observation of $\chi_{cI} \rightarrow 4K_s^0$

- λ_{c0} and λ_{c2} are expected to decay via two-gluon processes \Rightarrow investigation of glueball dynamics
- > shed light on the understanding of isospin invariance.

$$\mathcal{B}_{\chi_{c0}\to 4K_S^0} = (5.76 \pm 0.34 \pm 0.38) \times 10^{-4}$$

$$\mathcal{B}_{\chi_{c1}\to 4K_S^0} = (0.35 \pm 0.09 \pm 0.03) \times 10^{-4}$$


$$\mathcal{B}_{\chi_{c2}\to 4K_S^0} = (1.14 \pm 0.15 \pm 0.08) \times 10^{-4}$$

First observation

Observation of $\eta_c \rightarrow \omega \omega$ in $J/\psi \rightarrow \gamma \omega \omega$

- Properties of η_c are not fully understood yet, the observed branching fractions sum up to only about 57%.
- The predictions for the branching fraction of the $\eta_c \to \omega \omega$ process range from 9.1×10^{-5} to 1.3×10^{-4} , while the best experimental determination yielded an upper limit of $< 3.1 \times 10^{-3}$ at the 90% confidence level.

Observation of $\eta_c \rightarrow \omega \omega$ in $J/\psi \rightarrow \gamma \omega \omega$

The decay $\eta_c \to \omega \omega$ in the process $J/\psi \to \gamma \omega \omega$ is measured for the first time at BESIII.

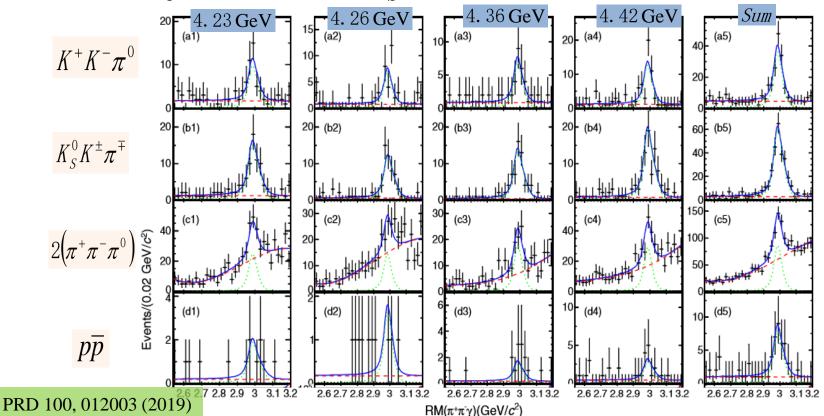
$$\mathcal{B}(J/\psi \to \gamma \eta_c) \cdot \mathcal{B}(\eta_c \to \omega \omega) = (4.90 \pm 0.17_{\rm stat.} \pm 0.77_{\rm syst.}) \times 10^{-5}$$

 $\mathcal{B}(\eta_c \to \omega \omega) = (2.88 \pm 0.10_{\rm stat.} \pm 0.46_{\rm syst.} \pm 0.68_{\rm ext.}) \times 10^{-3}$

about one order of magnitude larger than prediction

Next-to-Leading order pQCD calculations

 \succ The mass and decay width of η_c


$$M(\eta_c) = (2985.9 \pm 0.7_{\rm stat.} \pm 2.1_{\rm syst}) \,\text{MeV}/c^2$$

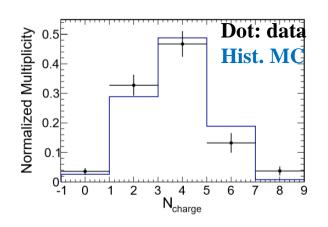
 $\Gamma(\eta_c) = (33.8 \pm 1.6_{\rm stat.} \pm 4.1_{\rm syst.}) \,\text{MeV}$

in good agreement with the world average values.

Measurements of the branching fractions of $\eta_c \rightarrow K^+K^-\pi^0$, $K_s^0K^\pm\pi^{-/+}$, $2(\pi^+\pi^-\pi^0)$ and $p\bar{p}$

- $h_c \to \gamma \eta_c$ was found to be a perfect process to measure both η_c resonant parameters and its decay branching fractions.
- \triangleright A large production rate of e⁺e⁻ $\rightarrow \pi^+\pi^-h_c$ has been found at BESIII.
- The chain $e^+e^- \rightarrow \pi^+\pi^- h_c$, $h_c \rightarrow \gamma \eta_c$ has been used to analyze these channels.

Measurements of the branching fractions of $\eta_c \rightarrow K^+K^-\pi^0$, $K_s^0K^\pm\pi^{-/+}$, $2(\pi^+\pi^-\pi^0)$ and $p\bar{p}$



Measurements of the branching fractions of $\eta_c \rightarrow K^+K^-\pi^0$, $K_s^0K^\pm\pi^{-/+}$, $2(\pi^+\pi^-\pi^0)$ and $p\bar{p}$

PRD 100, 012003 (2019)

Measurements of η_c decay channel

Final states	BF (%)	BF (%) (PRD 86, 092009)
$K^+K^-\pi^0$	$1.15 \pm 0.12 \pm 0.10$	$1.04 \pm 0.17 \pm 0.11 \pm 0.10$
$K^0_S K^\pm \pi^\mp$	$2.60 \pm 0.21 \pm 0.20$	$2.60 \pm 0.29 \pm 0.34 \pm 0.25$
$2(\pi^+\pi^-\pi^0)$	$15.3 \pm 1.8 \pm 1.8$	$17.23 \pm 1.70 \pm 2.29 \pm 1.66$
$p\bar{p}$	$0.120 \pm 0.026 \pm 0.015$	$0.15 \pm 0.04 \pm 0.02 \pm 0.01$

- ➤ The measurements are consistent with previous results with improved accuracy.
- The good consistency between data and MC simulation for the multiplicity indicates that the current MC simulation works generally well.

Summary

- Lots of new results on charmonium decays have been obtained, a few of them are presented:
 - $\psi(3686) \rightarrow \Xi^{-}(1530)\Xi^{+}(1530)$ and $p\bar{p}\eta'$
 - $h_c \rightarrow \text{hadrons}$
 - $\chi_{cI} \rightarrow \mu^+ \mu^- J/\psi$, $\omega \phi$ and $4K_s^0$
 - $\eta_c \to \omega \omega$, $K^+K^-\pi^0$, $K_s^0K^{\pm}\pi^{-/+}$, $2(\pi^+\pi^-\pi^0)$ and $p\bar{p}$
- \triangleright 10 B J/ ψ data sample has been collected at BESIII, which will offer unique possibilities to study rare processes and to improve statistical accuracy.

Thanks for your attention!