Study of $\phi(2170)$ at BESIII

Wenbiao Yan (USTC)

On behalf of BESIII Collaboration

Strange quarkonium

• Compared with cc̄ and bb̄, ss̄ is a terra incognita.

• There are XYZ particles with c & b quark, how about XYZ particles with strange quark ?

Eur. Phys. J. C72, 2008

	$Y(2175) \to \phi(1020)\pi^+\pi^-$	strange,
$e^+e^- \Rightarrow \langle$	$Y(4260) \rightarrow J/\psi \pi^+ \pi^-$	charm,
	$\Upsilon(10860) \rightarrow \Upsilon(1S, 2S)\pi^+\pi^-$	bottom,

 $\phi(2170)$ as strange analogue of Y(4220)

$J^{PC} = 1^{--} \phi(2170)$

P	DG <i>(</i> 2170) DECAY M	IODES
	Mode	Fraction (Γ_i/Γ)
Γ_1 Γ_2 Γ_2	e^+e^- $\phi\eta$ $\phi\pi\pi$	seen
Γ ₄ Γ ₅	$\phi f_0(980) \\ \kappa^+ \kappa^- \pi^+ \pi^-$	seen
Г ₆ Г ₇	$K^+ K^- f_0(980) \rightarrow K^+ K^- \pi^+ \pi^- K^+ K^- \pi^0 \pi^0$	seen
Γ ₈ Γ ₉ Γ ₁₀	${K^+ K^- f_0(980) ightarrow K^+ K^- \pi^0 \pi^0} \ {K^{*0} K^\pm \pi^\mp} \ {K^* (892)^0 \overline{K}^* (892)^0}$	seen not seen not seen

- Published experimental information
 - ✓ Limited decay modes
 - ✓ Inconsistence on mass & width
- Theorists explain $\phi(2170)$ as
 - ✓ ssg hybrid
 - $\checkmark 2^{3}D_{1} \text{ or } 3^{3}S_{1} s\bar{s}$
 - ✓ tetraquark
 - ✓ Molecular state $\Lambda \overline{\Lambda}$
 - ✓ $\phi f_0(980)$ resonance with FSI
 - ✓ Three body system **¢KK**
 - ✓ Estimated or ruled out: not yet
- aspects of $\phi(2170)$ are still not fully understood. 3

$J^{PC} = 1^{--} \phi(2170)$ @ BESIII

$e^+ e^- \rightarrow \phi K^+ K^-$

- A hint for a resonance around $\Lambda\overline{\Lambda}$ threshold
 - ✓ Mass = 2232±3.5MeV;
 - \checkmark Width < 20 MeV
 - (no- ϕ) K⁺ K⁻: f₀(980), f₂'(1525)

$e^+ e^- \rightarrow 2(K^+ K^-)$

 \sqrt{s} (GeV)

$e^+ e^- \rightarrow K^+ K^-$

φ(2170) as ³S₁ΛΛ molecular Isoscalar: ω*/φ*; isovector: ρ* ✓ K+K⁻ resonance: ρ(2150) ?

$e^+ \: e^{\-} \to \phi \eta$ and $\phi \eta$ '

φη and φη' modes: isoscalar

 φ* and ω* (OZI suppressed)
 useful to measure parameters

 Tetraquark favorites φη and φη'

 $Y(2175) \xrightarrow{\bar{q} s, \bar{q}} \overline{F} \xrightarrow{PLB669, 160} \phi \eta(\phi \eta')$

8

• 1⁻⁻ s \overline{s} g has large $\Gamma_{\phi n}$ and smaller $\Gamma_{\phi n}$,

		<u>.</u>	I L		
1 s ⊽ g	alt	2.2GeV	standard	IKP	Ding
		PRD59	PLB650,390		
φη	2	19	11	3	1.2
φη'	0.01	2	0.1	0.02	0.4
$\Gamma(\phi \eta')/\Gamma(\phi \eta)$	200	9.5	110	150	3

 $e^+ e^- \rightarrow \phi \eta^*$

• **BESIII:** $e^+ e^- \rightarrow \phi \eta$ with $\eta' \rightarrow \gamma \pi^+ \pi^-$

$e^+ e^- \rightarrow \phi \eta'$

e⁺ e⁻ → φη and φη' ✓ φη @ BaBar: 1.7±0.7±1.3eV

 $\frac{\text{BaBar: Br}[\phi(2170)\rightarrow\phi\eta]\Gamma_{ee}}{\text{BESIII: Br}[\phi(2170)\rightarrow\phi\eta']\Gamma_{ee}}=0.23\pm0.11$

• If we observed $\phi(2170)$ in $e^+ e^- \rightarrow \phi \eta'$, $\phi(2170)$ as an $1^{--} s \overline{s} g$?

1- s s g	alt	2.2GeV	standard	IKP	Ding
		PLB650,390			
φη	2	19	11	3	1.2
φ η'	0.01	2	0.1	0.02	0.4
Γ(φη')/Γ(φη)	200	9.5	110	150	3

$e^+ e^- \rightarrow K K \pi \pi$

The KK $\pi\pi$ mode is important to distinguish $\phi(2170)$ theory models

- \checkmark **K**^{*}**K**^{*}: ss̄g (unfavored), 3³S₁ (favored)
- **KK₁(1400):** ssg (favored) \checkmark
- **KK(1460):** $s\bar{s}g$ (unfavored), $2^{3}D_{1}$ (favored)
- $K^{+}K^{-}\pi^{+}\pi^{-} \& K^{+}K^{-}\pi^{0}\pi^{0} @ BaBar$
- $J/\psi \rightarrow \eta \phi(2170) \rightarrow \eta K^* K^* @ BES$

PLB685, 27

Events / (0.02GeV/c²) 1 31

10

1.7 1.8 1.9

(b)

2 2.12.22.32.42.52.6

 $M(K^{*0}\overline{K}^{*0})$ GeV/c²

$e^+ e^- \rightarrow K^+ K^- \pi^0 \pi^0$

process	Significance (2.1250 GeV)	Significance (2.3960 GeV)
$\phi f_0(980)$	$> 8.0 \sigma$	$> 8.0 \sigma$
$\phi\sigma$	$> 8.0 \sigma$	2776 event
$\phi f_2(1270)$	5.0σ	
$\phi f_0(1370)$	8544 event	6.9σ
$K^{*+}(892)K^{*-}(892)$	$> 8.0 \sigma$	$> 8.0 \sigma$
$K^{+}(1460)K^{-}$	$> 8.0 \sigma$	6.4σ
$K_0^{*+}(1430)K^{*-}(892)$	$> 8.0 \sigma$	7.5σ
$K_2^{*+}(1430)K^{*-}(892)$	_	6.4σ
$K_1^+(1400)K^-$	$> 8.0 \sigma$	$> 8.0 \sigma$
$K_1^+(1270)K^-$	$> 8.0 \sigma$	$> 8.0 \sigma$
$K^{*+}(892)K^{-}\pi^{0}$	_	5.4σ
$K^+K^-f_0(980)$	6.2σ	$> 8.0 \sigma$
$K^+K^-\sigma$	$> 8.0 \sigma$	$> 8.0 \sigma$
$K^+K^-f_0(1370)$	$> 8.0 \sigma$	7.4 σ
$\omega(1420)\pi^0$	$> 8.0 \sigma$	5.2σ

- A PWA for multi-energy points
 @ [2.0, 2.644]GeV
- There is no significant signal of $e^+e^- \rightarrow KK^*(1410)$.
- Only dominant processes,
 KK₁(1270), KK₁(1400), KK(1460)
 and K*+(892)K*-(892) 12

 $e^+ e^- \rightarrow K^+ K^- \pi^0 \pi^0$

4.8

Significance(σ)

- ✓ Green shot-dashed: 1/sⁿ
- ✓ Blue dash-dotted: interference

• $\phi(2170) \rightarrow K K_1(1400)$ and K K(1460): Yes ?

4.5

1.2

1.4

$\phi(2170)$ as pure $3^3S_1 s\bar{s}$?

$3^3S_1s\bar{s}$			
³ P ₀ model	Lanzhou		
0	35.8		
102	45.7		
29	30.9		
93	49.3		
58	7.1		
26	41.4		
9.0	25.2		
21	0.3		
11	0.8		
	33S 3P ₀ model 0 102 29 29 93 58 58 26 9.0 21 21 11		

- Reduction to Absurdity

 3³S₁ ss̄: Γ_{K*K*} > Γ_{KK1(1400)}
 Exp. φ(2170) @ KK₁(1400)
 Exp. no φ(2170) @ K*K*
 Exp. similar ε_{eff}
 φ(2170) as pure 3³S₁ ss̄ No

 Similar check for modes

 KK*(1410): No φ(2170)
 KK(1460): Yes φ(2170)
- $\phi(2170)$ as pure $3^{3}S_{1}s\bar{s}$: No
- No $\phi(2170)$ at K*K* and KK*(1410)
- Yes $\phi(2170)$ at KK(1460) and KK₁(1400)

$\phi(2170)$ as pure $2^3D_1 s\bar{s}$?

Decay modes		\$(2170)		
	³ P ₀ model	Flux tube	Lanzhou	BESIII
KK	9.8	23.1	40.8	NO
$\mathbf{K}^*\mathbf{K}^*$	18.11	23.5	32.2	NO
KK(1460)	58.3	50.2	173.5	YES
KK*(1410)	31.9	26.0	57.3	NO
KK ₁ (1270)	21.9	46.4	101.5	?
KK ₁ (1400)	8.6	9.4	65.9	Yes
KK ₂ *(1430)	10.8	15.3	23.3	Not yet
φη	0	0	5.7	Not yet
φη'	2.9	2.8	1.8	Yes

- No $\phi(2170)$ at KK, K*K* and KK₁(1270)
- Yes $\phi(2170)$ at KK₁(1400)

♦(2170) as pure 1⁻⁻ s**s̄**g ?

Decay modes		\$(2170)			
	Ding	IKP	standard	2.2GeV	BESIII
KK	0				NO
K^*K^*	0				NO
KK(1460)	0				Yes
KK*(1410)	23	9	11	55	NO
KK ₁ (1270)	35.3	26	18.1	16.6	?
KK ₁ (1400)	70.1	63.7	32.04	40.6	Yes
KK ₂ *(1430)	15.0	2	0.07	2	Not yet
φη	1.2	3	11	19	Not yet
φη'	0.4	0.02	0.1	2	Yes

- No \$\phi(2170)\$ at KK*(1410)
- Yes $\phi(2170)$ at KK(1460)
- Small Γ(φη)/Γ(φη')

Summary and outlook

- Compared with cc̄ and bb̄, ss̄ is a terra incognita
- Aspects of $\phi(2170)$ are still not fully understood
- Using BESIII R scan data, we are studying $\phi(2170)$
 - ✓ $e^+ e^- \rightarrow \phi K^+ K^-$: narrow enhancement around 2.2324 GeV
 - ✓ $e^+ e^- \rightarrow K^+ K^-$: (possible) $\rho(2150)$, (unlikely) $\phi(2170)$
 - $\checkmark e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \to \phi ~\eta \ref{eq: 170}$ with

 $\frac{\text{BaBar: Br}[\phi(2170)\rightarrow\phi\eta]\Gamma_{ee}}{\text{BESIII: Br}[\phi(2170)\rightarrow\phi\eta']\Gamma_{ee}}=0.23\pm0.11$

✓ $e^+ e^- \rightarrow K^+ K^- \pi^0 \pi^0$: observe $\phi(2170)$ with KK(1460) and KK₁(1400), modes, without K*K* and KK^{*}(1410) modes

- Apply reduction to absurdity, $\phi(2170)$ is not a pure $3^{3}S_{1}$, $2^{3}D_{1}$ ss and 1^{-1} ssg?
- Theorists revisit $\phi(2170)$ decay again, please.

Bird's View of BEPCII & BESIII

BESIII Detector

Hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage

$\phi(2170) @ J/\psi \rightarrow \eta \ \phi \ \pi^+ \ \pi^-$

• Fit: $\phi(2170)$ + direct decay of $/\psi \rightarrow \eta \phi f_0(980)$ + background • No interference between $\phi(2170)$ and direct decay

Decay mode	Branching fraction \mathcal{B}
$I/\psi \to \eta Y(2175),$	$(1.20 \pm 0.14 \pm 0.37) \times 10^{-4}$
$Y(2175) \to \phi f_0(980),$	γ
$J_0(980) \rightarrow \pi^+\pi^-$	

$\phi(2170)$ @ $e^+ e^- \rightarrow \eta \phi \pi^+ \pi^-$

$e^+ e^- \rightarrow \eta \; \phi(2170)$

$\phi(2170) @ \phi f_0(980) mode$

φ f ₀ (980)	Mass (MeV)	Width (MeV)	Events
BaBar (2006)	2175±10±15	58±16±20	271
BES (2008)	2186±10±6	65±23±17	52
Belle (2009)	2163±32	125±40	4.8K
BaBar (2012)	2172±10±8	96±19±12	
BESIII (2015)	2200±6±5	104±15±15	471
BESIII (2019)	2135±8±9	$104\pm24\pm12$	95
PDG2018	2188±10	83±12	

• φ(2170) @ PDG2019: NO PDG estimated value

$e^+ e^- \rightarrow K K \pi \pi$

Modes	$2^{3}D_{1}s\overline{s}$	1 s s g	$3^{3}S_{1}s\overline{s}$	$K^+K^-\pi^+\pi^-$	$K^+K^-\pi^0\pi^0$	$K^+K^-\pi^0$
	Flux tube	Flux tube	³ P ₀			
$\mathbf{K}^*\mathbf{K}^*$	23.5	0	102	14.8%	7.4%	
KK(1460)	50.2	0	29	25.7%	6.4%	
KK*(1410)	26.0	23	93	27.0%	6.4%	1.6%
KK ₁ (1270)	46.4	35.3	58	23.7%	4.0%	
KK ₁ (1400)	9.4	70.1	26	29.5%	7.4%	
KK ₂ *(1430)	15.3	15.0	9.0	9.5%	1.9%	11.1%
φη	0	1.2	21			
φη'	2.8	0.4	11			

- Mode $K^+K^-\pi^+\pi^-$ is better than $K^+K^-\pi^0\pi^0$
- $KK_2^*(1430)$: (favored) $K^+K^-\pi^0$
- Notice: charged & neutral K meson; Brs

24

1- ssg hybrid

1- s s g	alt	2.2GeV	standard	IKP	Ding
		PLB650,390			
K^*K	13	26	23	16	3.7
φη	2	19	11	3	1.2
φη'	0.01	2	0.1	0.02	0.4
KK ₂ *(1430)	0.1	2	0.07	2	15
KK ₁ (1270)	23.2	16.6	18.1	26	35.3
KK ₁ (1400)	43.1	40.6	32.04	63.7	70.1
$h_1(1415)\eta$	0.07	0.6	0.04	0.3	0
KK*(1410)	3	55	11	9	23
Width(MeV)	84	155	95	120	148.7

• Theory prediction: model & input parameters dependent

1⁻⁻ ssg hybrid

Fraction Γ_i/Γ: weakly model & input parameters dependent
 Dominant decay modes: KK₁(1400) & KK₁(1270)

 $1^{-3}\mathbf{S}_{1}\mathbf{s}\overline{\mathbf{s}}$

- Fraction Γ_i/Γ : weakly model & input parameters dependent
- Dominant decay modes: KK*(1410) & K*K*
- KK: sharp distinction ?

$1^- 2^3 D_1 s \overline{s}$

Fraction Γ_i/Γ: weakly model & input parameters dependent
 Dominant decay modes: KK(1460) & KK₁(1270)

$\phi(2170) \ @ \ J/\psi \rightarrow \eta \ \phi \ \pi^+ \ \pi^-$

- Fit: φ(2170) + direct decay
 of /ψ → ηφf₀(980) + background
 Interference between φ(2170)
- and direct decay
- A Partial Wave analysis ?

Parameters	Constructive	Destructive
M (MeV/ c^2)	2171 ± 10	2170 ± 9
Γ (MeV)	128 ± 26	126 ± 25
Signal yields	400 ± 167	744 ± 40
relative angle $\Phi(rad)$	-0.51 ± 0.78	0.60 ± 0.64