

Quarkonia production in heavy-ion collisions at LHCb Zhenwei Yang (杨振伟) Center for High Energy Physics, Tsinghua University

on behalf of the LHCb collaboration

2019.08.21

Outline

Introduction

- \succ Quarkonia production in *p*Pb
- Quarkonia produciton in PbPb

> Summary

See talk by Shanzhen Chen at 9:55 of 20 August (Session 6): Recent results and prospects on ultra-peripheral heavy-ion collisions at LHCb

See talk by Jiayin Sun at 9:15 of 21 August (Session 7): <u>Production of open heavy flavour hadrons in pPb and fixed-target collisions LHCb</u>

The LHCb detector

JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30 (2015) 1530022

Key features for heavy-ion: performance + trigger

- > Excellent detector performance, notably for heavy flavour hadrons
 - Precision vertexing and tracking
 - Excellent PID

- Efficient trigger: no rate limitation for heavy-ion runs
 - Can access heavy flavour hadrons with very low p_{T}

Key features for heavy-ion: forward acceptance

- Unique forward coverage at the LHC
 - Sensitive to small Bjorken-x
 - Rapidity dependence helps distinguishing nuclear effects

ALICE

Heavy-ion samples at the LHC

- \succ LHCb started *p*Pb data taking in 2013 and PbPb in 2015
 - Very limited luminosity, but successful data taking and physics output
- Larger pPb samples in 2016 and PbPb samples in 2018, owing to larger share of the LHC luminosity

Quarkonia in pPb

Beam configuration

 \succ Asymmetric beam energy due to different charge-mass ratios of proton and lead ✓ rapidity shift $\Delta y = \pm 0.465$ Rapidity coverage (in nucleon-nucleon centre-of-mass frame) \checkmark Forward (*p*Pb) $y^* = y_{lab} - 0.465 \Rightarrow 1.5 < y^* < 4.0$ \checkmark Backward (Pbp) $y^* = -(y_{lab} + 0.465) \Rightarrow -5.0 < y^* < -2.5$ Common coverage ✓ 2.5 < |y| < 4.0

$\sqrt{s_{ m NN}}$	Lumi (Fwd)	Lumi (Bwd)
2013: $\sqrt{s_{\rm NN}} = 5.02 { m TeV}$	1.1 nb^{-1}	0.5 nb^{-1}
2016: $\sqrt{s_{\rm NN}} = 8.16 {\rm TeV}$	13.6 nb^{-1}	20.8 nb^{-1}

Clean sample, number of signals much large than 2013 (5.02 TeV)

 J/ψ in pPb at 8.16 TeV

- > Prompt and secondary J/ψ separated
- $> d^2 \sigma / dp_T dy$ measured down to zero p_T
- > Sensitive probe of gluon PDF at low Bjorken-x

Zhenwei Yang, Center for High Energy Physics, Tsinghua

PLB 774 (2017) 159

 $3.5 < v^* < 4.0$

 $1.5 < v^* < 2.0$ $2.0 < y^* < 2.5$

 $2.5 < v^* < 3.0$

 $3.0 < y^* < 3.5$

 $3.5 < v^* < 4.0$

5

10

 $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$

10

 J/ψ -from-*b*-hadrons, *p*Pb

 $p_{\rm T}[{\rm GeV}/c]$

LHCb

 10^{0}

 10^{2}

 10^{1}

 10^{0}

0

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y^*} \left[\mathrm{n}b/(\mathrm{Ge}\,\mathrm{V}/c) \right]$

Forward

0

 $-5.0 < v^* < -4.5$

 $4.0 < v^* < -3.5$

10

 $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$

 J/ψ -from-b-hadrons, Pbp

 $p_{\rm T}[{\rm GeV}/c]$

LHCb

Backward

 10^{0}

 10^{2}

 $\frac{d^2\sigma}{dp_{\mathrm{Td}}y^*} \left[\mathrm{nb}/(\mathrm{Ge}\,\mathrm{V/c}) \right]$

Fraction of from-b

Zhenwei Yang, Center for High Energy Physics, Tsinghua

11

PLB 774 (2017) 159

J/ψ in pPb at 8.16 TeV: nuclear modification

- Stronger suppression in forward than in backward
- > Stronger suppression for prompt J/ψ
- Compatible with initial-state (nPDF) effects
 - Prompt: HELAC-onia [Shao, CPC198 (2016) 238] From-b: pQCD at FONLL [Cacciari et al, JHEP05(1998)007]
- Good agreement with CGC calculation
 - Ducloue et al, 【PRD94(2016)074031】

Nuclear modification factor:
$$R_{pPb} \equiv \frac{1}{A} \frac{\sigma_{pPb}}{\sigma_{pp}}$$

J/ψ in pPb at 8.16 TeV: nuclear modification PLB 774 (2017) 159

Rapidity dependence of nuclear modification factor can be also described by coherent energy loss

• Arleo and Peigne, JHEP03(2013)122

Zhenwei Yang, Center for High Energy Physics, Tsinghua

Comparison of J/ψ and $\psi(2S)$ in pPb

- $\succ \psi(2S)$ in *p*Pb at 8.16 TeV still under way
- \succ Results from the 5 TeV sample show stronger suppression compared with prompt J/ψ
 - unexpected from initial-state effects or energy loss
 - Results of $\psi(2S)$ from b and J/ψ from b are compatible

Zhenwei Yang, Center for High Energy Physics, Tsinghua

JHEP 03 (2016) 133

Cross-sections measured and nuclear effects studied

 $\Upsilon(nS)$ in pPb at 8.16 TeV

 \succ Clearly distinguished the three $\Upsilon(nS)$ peaks

JHEP 11 (2018) 194

$\Upsilon(nS)$ in pPb at 8.16 TeV: R_{pPb}

- > Nuclear modification factor R_{pPb} measured for $\Upsilon(1S)$ and $\Upsilon(2S)$
- Data favour prediction of comover model [JHEP10(2018)094, PLB749(2015)98]
 - Larger suppression for excited states and in backward due to final-state effects

Zhenwei Yang, Center for High Energy Physics, Tsinghua

$\Upsilon(nS)$ in *p*Pb at 8.16 TeV: double ratios JHEP 11 (2018) 194

> Double ratios $\mathcal{R}_{pPb}^{2S/1S}$ and $\mathcal{R}_{pPb}^{3S/1S}$ show clear sequential suppression

- Notable for $\Upsilon(3S)$, agree with comover model [JHEP10(2018)094; PLB749(2015)98]
- Crucial to get a correct interpretation of QGP-induced sequential suppression

2019/08/21

Zhenwei Yang, Center for High Energy Physics, Tsinghua

Quarkonia in PbPb collisions

PbPb data at LHCb

- \geq PbPb data taking in 2015 (~10 µb) and 2018 (~210 µb)
- Centrality determined from total energy in ECAL
- \succ Tracking performance good for centrality above 50%
- Interesting physics from peripheral collisions
 - J/ψ photoproduction
 - J/ψ and D^0 ratio, Υ vs centrality
 - Flow for D^0

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

20-30%

20

0-20%

30-40%

40-50%

LHCb preliminary

Ecal Energy [TeV]

 $\sqrt{s_{NN}} = 5 \text{ TeV}$

0-10%

40

Entries [a.u

 10^{5}

 10^{4}

 10^{3}

 10^{2}

10

45

Ultra peripheral PbPb coliisions

- Photoproduction of hadrons enhanced by photon flux in PbPb
 - Proportional to $Z^2 = 82^2$
- Sentitive to gluon distribution at low Bjorken-x (down to 10⁻⁵), the saturation region
- > Signature is an exclusive dimuon with low $p_{\rm T}$ (< 1 GeV)
- > Coherent and incoherent J/ψ photoproduction can be distinguished from $p_{\rm T}$ spectrum

UPC result for coherent cross-section

Results compared with different models

- pQCD, Guzy et al, PRC93(2016)055206
- Colour-Dipole model, Goncalves et al, PRD96(2017)094027
 Cepila et al, PRC97(2018)024901
 Mantysaari et al, PLB772(2017)832
- Good prospects with the larger sample collected in 2018
 - Better accuracy, including reduced systematic uncertainty through larger control sample
 - Access $\psi(2S)$ and possibly other quarkonia states

Summary

- Heavy-ion data collected by LHCb since 2013 have been providing unique results for heavy quarkonia
- > More results with the Run 2 data are under way
- > The ongoing Upgrade provide more opportunities in Run3 and 4
 - Larger data samples (at least 10 times)
 - Access more central PbPb collisions owing to the upgraded tracking system

Thank you