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t ≡ x02 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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Why	go	to	light	front?

• Frame	independent	wavefunction

• Simple	vacuum	structure

• Boost	invariant

• No	square	root	in	Hamiltonian	𝑃)

• not	just	a	coordinate	transformation.

• a	new	theory	in	a	different	quantization.

Light-front	Quantization

2

Equal	time	quantization Light-front	quantization
[Dirac,	1949]



Basis	Light-front	Quantization
• Nonperturbative	eigenvalue	problem

𝑃)|𝛽⟩ = 𝑃2)|𝛽⟩
• 𝑃):	light-front	Hamiltonian
• |𝛽⟩:	mass	eigenstate
• 𝑃2):	eigenvalue	for	|𝛽⟩

• Evaluate	observables	for	eigenstate
𝑂 ≡ 𝛽 𝑂5 𝛽

• Fock sector	expansion
• Eg.

• Discretized	basis
• Transverse:	2D	harmonic	oscillator	basis:	Φ8,9

: 𝑝⃗, .	
• Longitudinal:	plane-wave	basis,	labeled	by	𝑘.	
• Basis	truncation:	

∑ 2𝑛A + 𝑚A + 1�
A ≤ 𝑁9GH,	

∑ 𝑘A�
A = 𝐾.	

𝑁9GH, 𝐾 are	basis	truncation	parameters.

|𝐏𝐬⟩ 	= 𝑎|𝑒𝑒̅⟩ + 𝑏|𝑒𝑒̅𝛾⟩ 	+ c|𝛾⟩ + d|𝑒𝑒̅𝑒𝑒̅⟩ 	+.	.	.	.

3Large	𝑁9GH and	𝐾 :	High	UV	cutoff	&	low	IR	cutoff

[Vary	et	al,	2008]
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More	talks	about	Light-front	dynamics	&	basis	light-front	quantization:

• Shaoyang Jia,	“Valence	structures	of	light	and	strange	mesons	from	the	basis	
light-front	quantization	framework”,	20/pm

• Jiangshan	Lan,	“On	light	mesons	Parton	distribution	functions	from	basis	light	
front	quantization”,	18/pm

• Siqi	Xu,	“three	dimension	imaging	of	proton	from	BLFQ”,	20/am

• Sreeraj Nair,	“Quark	Wigner	distributions	Using	Light-front	Wave	Functions”,	
20am

• Xingbo Zhao,	“Basis	Lightfront	Approach	to	Hadron	Structure”,	20/pm

• Chandan	Mondal,	“Wigner	distribution	and	spin	structure	of	pion	from	light	
front	holographic	QCD”	,	20/pm



Why	Positronium

Positronium	is	a	test	bed	for

• Relativistic	bound	state	structure	beyond leading	Fock-sector

• Basis	Light-front	Quantization	on	first-principle	of	QED,	esp.,	
nonperturbative	renormalization procedure

• Connection	with	one-photon-exchange	effective	theory
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[Wiecki,	et	al,	2015]



Light-front	QED	Hamiltonian

• QED	Lagrangian

• Light-front	QED	Hamiltonian	from	standard	Legendre	transformation

14

dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x

⌥

). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1

4

�+�� ,  + ⌘ 1

4

���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@

+

Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@

+

Aµ +
1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F

+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †

+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †

+[me�i�?@?]
1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †

+[e�?C?]
1

i@+
[me + i�?@?] +

+ †

+[me � i�?@?]
1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
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+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�

QED

.
The second line contains the new terms generated by the
background field. We label the terms in P�

QED

as Tf , T� ,
W

1

. . . W
3

respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W

1

is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W

2

is the instantaneous-photon interaction and
W

3

is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †

+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W

2

and W
3

, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P

�

QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�

QED

, are
listed below.
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kinetic	energy	terms

vertex	
interaction

instantaneous	
photon	

interaction

instantaneous	
fermion	

interaction

A+ = 0( )
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Light-cone	gauge:
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Interaction	Part	Of	Hamiltonian

Hint

me=1.0MeV			𝛼 = 0.3

|𝑒𝑒̅⟩

⟨𝑒𝑒̅|

⟨𝑒𝑒̅𝛾|

|𝑒𝑒̅𝛾⟩

|𝐏𝐬⟩ 	= 𝑎|𝑒𝑒̅⟩ + 𝑏|𝑒𝑒̅𝛾⟩ 	+ c|𝛾⟩ + d|𝑒𝑒̅𝑒𝑒̅⟩ 	+.	.	.	.
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Ground	State	Binding	Energy
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[Kaiyu Fu	et	al,	in	preparation]

𝑁9GH = 𝐾 − 1

𝐸Y = 𝑀[ − 2𝑀\

• 𝐸Y:	binding	energy	of	positronium

• 𝑀[:	Invariant	mass	of	positronium

• 𝑀\:	Invariant	mass	of	free	electron
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Binding	energy	looks	convergent.	nontrivial



Mass	Renormalization	

8 12 16 20 24 28

0.058

0.060

0.062

0.064

Nmax

M
as
s
co
un
te
rte
rm

(M
eV

)

• Mass	renormalization	is	
performed	on	the	level	single	
physical	electron	

• Mass	counterterm is	
determined	by	fitting	single	
electron	mass

• Plug	the	physical	electron	and	
positron	into	the	positronium.	

[Kaiyu Fu	et	al,	in	preparation]

turn on mass counterterm

turn off mass counterterm
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𝑁9GH = 𝐾 − 1

𝑁9GH = 𝐾 − 1

Mass	counterterm is	much	larger than	EB



[Kaiyu Fu	et	al,	in	preparation]

lowest	8	states	of	Mj=0	:	parity and	charge	conjugation	parity	agree	with	hydrogen	atom.	
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Nmax=16,K=17,
bratio=0.66, binst=0.925,unshiftedNmax=16,	K=17

Energy	spectrum
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[Kaiyu Fu	et	al,	in	preparation] 11
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Nmax=20,K=21
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Nmax=24,K=25
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Rotational	symmetry	is	restoring
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Probability	Of	|𝑒-𝑒)⟩

1 − probability	of	|𝑒-𝑒)⟩:	the	probability	to	find	photon
Excited	states	have	larger	|𝑒𝑒̅𝛾⟩ component

positronium
11S0 21S0

23P0 23P2

10 15 20 25
0.5

0.6

0.7

0.8

0.9

1.0

Nmax

Probability of |e+e->

[Kaiyu Fu	et	al,	in	preparation] 12

𝑁9GH = 𝐾 − 1

Pr
ob

ab
ili
ty
	o
f	

• Interaction	mediated	
through	photon.

• Finite	probability	to	find	
photon	



Photon	Distribution	In	Positronium

• In	excited	states	photons	have	larger	probability	at	small-x	region
• Photon	is	massless,	so	peak	is	at	small-x	region

[Kaiyu Fu	et	al,	in	preparation]
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Wavefunction
This	work	
Nmax=20,K=21,MJ=0

The	effective	one-photon-exchange	
Nmax=20,K=19,MJ=0

[Kaiyu Fu	et	al,	in	preparation] [Wiecki,	et	al,	2015]
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[Kaiyu Fu	et	al,	in	preparation] [Wiecki,	et	al,	2015]



Conclusions

• Solve	positronium	system	based	on	first-principle	of	QED

• Direct	access	to	photon	content

• Consistent	access	to	both	spectrum	and	structure

• Rotation	Symmetry	is	restoring	as	basis	size	increase

• Mass	renormalization	is	performed	on	the	level	of	electron

• Wave	function	and	energy	spectrum	for	low-lying	states	reasonably	

agree	with	those	from	the	effective	one-photon-exchange	approach

• The	convergence	of	physical	results	looks	promising
16



Outlook

• Further	convergence	study

• More	observables:	PDF,	GPD,	TMD,	GTMD,	
Wignar distribution,	double	parton	distribution	function…

• Heavy	quarkonium &	Light	meson	systems

• Exotic	hadron	states
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