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Hadron spectrum and interactions

Hadron-hadron interactions are important for the hadron spectrum

= threshold effects

D4(2317): contribution of DK continuum

= molecular states
Deuteron: bound state of proton and neutron
P, states reported at LHCb recently; Z,(10610), Z,(10650)
= other exotic states
X, Y, Z states, debate with different interpretations:
molecules? tetraquark? ordinary charmonium? two diquark? kinetic

effects?



Study of Interactions within chiral perturbation theory (ChPT)

= ChPT with respect on symmetries of QCD

= Power counting

= NOT in power series: as, a2, o, ..

= expanded with small momentum
= systematically study, order by order, error controlled

= check of standard model

= Natual extension

2-body force, 3-body force,...

= Wide applications






ChPT with heavy hadrons involved

= Dealing systems with light mesons

ChPT results can be expanded as power series of
me /Ny, q/Ny, ...
= Power Counting Breaking (PCB) in systems with heavy hadrons

involved
large masses of heavy hadrons make ¢" is never small again

power counting can be recovered with the help of residual momentum g*

3" = g* — m(1,0).



Solutions for systems with one heavy hadron

= Heavy hadron effective field theory (EFT)
nonrelativistic reduction at Lagrangian level, breaking of analyticity.
Simple and still correct if not analytically extending results too far away

= |nfrared regularization
relativistic Lagrangian, drop PCB terms at regularization
good power counting and analyticity

= Extended on-mass-shell scheme

relativistic Lagrangian, drop PCB terms at final results

good power counting and analyticity
Results with three different schemes will be same if

= being summarized at ALL orders, or

= the mass of heavy hadron becomes infinitely large.



ChPT with few hadrons involved—new trouble

The amplitude of following 2-Particle-Reducible diagram contains !
7= i/ dP _,I _,I ~ = T .
P+ P —P2/2my) +ie =P+ PP —P2/2mp)+ e P?/(2mp) + ie
(1)

= naive power counting scheme

T~ 01/ 1B
= eq. (1)

— I ~ O(mn/|PP)
7 is actually enhanced by a large factor m,\/,’\P).
. Solid line for nucleon, dashed line for pion.
P —

(P represents the residual momentum)

Box Diagram.
Lwe have not listed the parts preserving power counting




Weinberg scheme

= not directly calculate physical observables with perturbation theory
= systematically study effective potentials first (without 2PR
contribution)

= solve the dynamical equation to get the physical observables

(equivalent to recover the 2PR contributions)



Effective potentials between two

heavy mesons




With Heavy Meson EFT, we study the systems made up of

= DD
= DD

= D*D*

Similar for B®*) B*) and corresponding anti-meson pair system.

We have not studied systems like DD because there exist annihilation

effects.



= Leading order vertice
contact terms: D™ D) DX D) vertice
DX D™, DX DS e vertice

= Next-to-leading order vertice

they absorb divergences, provide finite higher-order corrections

£ES_), = D,Tr [nyﬂl_-l] Tr [Hy"H] 4 D, Tr [H’yufyg)/_-l] Tr [Hy" s H
+E, Tr [Hy, N H] Tr [Hy* A;H] + Ep Tr [Hy,vsA*H] Tr [Hy"~s A, H],

0 = (v OH)H) — (Hv- TH) + g(HusH) — %A(HO—WF/O—M,

He
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= Leading order vertice
contact terms: D)D) D) D) vertice

DD . D) DE) e vertice

= Next-to-leading order vertice

they absorb divergences, provide finite higher-order corrections

£ = DiTr[Hy, | Tr [Hy"F Tr (x4) + ..
+D¢ T [Hy, X4 H] Tr [Hy*H] + ...
+D{ Tr [(D* H)y,ys(D” H)] Tr [Hy, v H] + ..
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Diagrams

= Leading order

contact, one-pion exchange
= Next-to-leading order
two-pion exchange, renormalization to D™ D)z coupling, loop

corrections to contact term, tree diagrams with NL vertice
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= Leading order
contact, one-pion exchange
= Next-to-leading order
two-pion exchange, renormalization to D®) D)7 coupling, loop

corrections to contact term, tree diagrams with NL vertice
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= Leading order
contact, one-pion exchange
= Next-to-leading order
two-pion exchange, renormalization to D®) D)7 coupling, loop

corrections to contact term, tree diagrams with NL vertice
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= Leading order
contact, one-pion exchange
= Next-to-leading order
two-pion exchange, renormalization to D®) D)7 coupling, loop

corrections to contact term, tree diagrams with NL vertice

(a5 (ab) (aT) (a8)

\/\---/\/\/ H



Determination of low-energy constants

= fit to experimental data
= first principle of QCD
= fit to data of Lattice QCD

= phenomenological models

12



fit to experimental data

first principle of QCD
fit to data of Lattice QCD

phenomenological models

= I
S af H
S SOF B
& e >
o1 oz a5 o4 o5 56 o1 o2 a5 54 o5 o6
m m
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Effective potentials in momentum space

V(g)(Gev)
V(@) (Gev)
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Possible molecular states




for new states

= Potentials— partial waves, dynamical equation (momentum space)
— T matrices — poles

» Potentials— Fourier transform, dynamical equation (coordinate

space)

— eigenvalues of bound states for different partial waves
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= /= 0: bound state with around E = —21"% MeV.

I = 1: no bound state.
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Search for new states

= Potentials— partial waves, dynamical equation (momentum space)
— T matrices — poles
» Potentials— Fourier transform, dynamical equation (coordinate
space)
— eigenvalues of bound states for different partial waves
Taking DD* as an example
= /= 0: bound state with around E = —21"% MeV.
/= 1: no bound state.
= Comparison with one-boson-exchange model
Li,Sun,Liu,Zhu,PRD88(2013),114008;/ = 0: —43 ~ —5 MeV;
Liu,Wu,Valderrama,Xie,Geng,PRD99(2019),094018; / = 0: —31";5.
p/w/... contribution is covered not only by the two-pion-exchange

part but also by contact terms.
14



B*) B systems

We use similar approaches to study the system of B(*)B*) in S wave

= BB I(JP) = 1(0%)
- BB (SF)=1(1%), I(JP) = 0(1%)
= BB () =1(0%), I(S)=1(2%), N(S)=0@1")
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Example:

potentials for B*B* with /(J°) = 0(1*) in momentum space

15 TTrrrrroroT TTrrrrrroT T

V(q) (GeV~2)
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Example:

potentials for B*B* with /(J°) = 0(1%) in coordinate space
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Results for B*)B*) systems

we find two bound states in the channels of 0(1*) BB* and B*B*

= binding energies: AEgg. ~ —12.6797, MeV, AEg. 5. ~ —23.87303
MeV
masses: mpg. ~ 10591.4792 MeV, mp.5. =~ 10625.571%3 MeVv
= strong decays are forbidden because of phase space

they can be searched in BBy or BByy
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we find two bound states in the channels of 0(1*) BB* and B*B*

= binding energies: AEgg. ~ —12.6797, MeV, AEg. 5. ~ —23.87303
MeV
masses: mpg. ~ 10591.4792 MeV, mp.5. =~ 10625.571%3 MeVv
= strong decays are forbidden because of phase space

they can be searched in BBy or BByy

Bound states [bbgg] with I(JF) = 0(1") also existed in other framework

Eichten,Quigg, PRL.119(2017),202002;

Karliner,Rosner,PRL.119(2017)202001;

Bicudo,Scheunert,Wagner,PRD95(2017)034502;

Wang,Acta Phys.Polon.B49(2018)1781;

Park,Noh,Lee,Nucl.Phys.A983(2019)1-19;

Liu,Wu,Valderrama,Xie, Geng,PRD99(2019),094018;
Francis,Hudspith,Lewis,Maltman,PRL.118(2017)142001;
Junnarkar,Mathur,Padmanath,PRD99(2019)034507;

Leskovec,Meinel,Pflaumer, Wagner,PRD100(2019),014503 19



Uncertainty of low-energy constants

Table 1: The binding energies of 0(1*) BB* and B*B" states obtained with

different strategies in units of MeV.

Binding energy

No O(e?) LECs

Strategy A

Strategy B

AEgg.

9.2
—12.6J_r12‘9

7.2
—10.4757

9.
_15-9t127.7

N,

16.3
—23.805)%

145
—20.17507

18.6
—28.2+18:0
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We have studied the potentials upto one-loop level between two heavy

mesons within chiral perturbation theory.

By solving the Schrodinger equations, we found some bound states in

some channels.

With the wavefunctions obtained, we can further study other properties

of these new states.

21



Thanks!
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This report is mainly based on the following articles

= Phys.Rev. D99 (2019) no.3, 036007
= Phys.Rev. D99 (2019) no.1, 014027

= Phys.Rev. D89 (2014) no.7, 074015
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