

Access to decoupled information of Generalized Parton Distributions via Double Deeply Virtual Compton Scattering

Shengying ZHAO

20 Aug 2019

Institut de Physique Nucléaire Orsay, IN2P3/CNRS Université Paris-Sud & Paris-Saclay

Generalized Parton Distributions (GPDs)

elastic scattering $ep \rightarrow ep$

R. Hofstadter, Nobel Prize 1961 Form Factors (FFs)

 \rightarrow transverse position space.

Friedman, Kendall, Taylor, Nobel Prize 1990 Parton Distribution Functions (PDFs) \rightarrow longitudinal momentum.

exclusive inelastic scattering

GPDs: H^q , E^q , \tilde{H}^q , $\tilde{E}^q(x, \xi, t)$ describe the non-perturbative quark (gluon) structure of the nucleon.

Dupré, Guidal, Niccolai, Vanderhæghen 2017 → nucleon tomography from the correlation between transverse position and longitudinal momentum

Burkert, Elouadrhiri, Girod 2018 \rightarrow internal pressure distribution $\int xH(x,\xi,t)dx$ $= M_2(t) + \frac{4}{5}\xi^2 d_1(t)$

Ji 1997 \rightarrow quark angular momentum $\int x \left[H^q(x,\xi,0) + E^q(x,\xi,0)\right] dx$ DVCS and DDVCS [1-4] are two golden processes for direct measurements of GPDs

Deeply Virtual Compton Scattering (DVCS)

$$\begin{aligned} \mathcal{H}(\xi,\,\xi,\,t) &= \sum_{q} e_{q}^{2} \Big\{ \mathcal{P} \int_{-1}^{1} dx \, H^{q}(x,\,\xi,\,t) \left[\frac{1}{x-\xi} + \frac{1}{x+\xi} \right] \\ &- i\pi \left[H^{q}(\xi,\,\xi,\,t) - H^{q}(-\xi,\,\xi,\,t) \right] \Big\} \end{aligned}$$

$$\begin{split} \mathcal{H}(\boldsymbol{\xi}',\boldsymbol{\xi},t) &= \sum_{q} e_{q}^{2} \Big\{ \mathcal{P} \int_{-1}^{1} dx \; H^{q}(x,\boldsymbol{\xi},t) \left[\frac{1}{x-\boldsymbol{\xi}'} + \frac{1}{x+\boldsymbol{\xi}'} \right] \\ &- i\pi \left[H^{q}(\boldsymbol{\xi}',\boldsymbol{\xi},t) - H^{q}(-\boldsymbol{\xi}',\boldsymbol{\xi},t) \right] \Big\} \end{split}$$

- DVCS can access GPDs only at $x = \pm \xi$;
- DDVCS allows one to measure the GPDs for each x, ξ, t values independently (|ξ'| < ξ).
- [1] M. Guidal and M. Vanderhaeghen, Phys. Rev. Lett. 90 012001 (2003).
- [2] A. V. Belitsky and D. Müller, Phys. Rev. Lett. 90 022001 (2003).
- [3] I. V. Anikin, et al., Acta Phys. Pol. B 49 741 (2018).
- [4] S. Zhao, PoS (SPIN2018) 068.

channel: $ep \rightarrow ep\mu^-\mu^+$ (avoid antisymmetrization)

 $\sigma \propto \mathcal{T}^2 = |\mathcal{T}_{\mathsf{ddvcs}}|^2 + |\mathcal{T}_{\mathsf{BH}_1} + \mathcal{T}_{\mathsf{BH}_2}|^2 + \mathcal{I} \text{ (linear in Compton form factors)}$

polarized electron, unpolarized proton

$$\Delta \sigma_{\mathsf{LU}} \sim \Im \mathsf{m} \left\{ F_1 \mathcal{H} + \xi' (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right\} \sin \phi$$

electron and positron, unpolarized proton

$$\Delta \sigma_{\mathsf{C}} \sim \Re \mathsf{e} \left\{ F_1 \mathcal{H} + \xi' (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right\} \cos \phi$$

unpolarized electron, longitudinally polarized proton $\Delta \sigma_{\text{UL}} \sim \Im \mathsf{m} \left\{ F_1 \widetilde{\mathcal{H}} + \xi' (F_1 + F_2) (\mathcal{H} + \frac{\xi}{1+\xi} \mathcal{E}) + \cdots \right\} \sin \phi$

unpolarized electron, transversely polarized proton $\Delta \sigma_{\text{UT}} \sim \Im m \left\{ \xi^2 F_1(\mathcal{H} + \mathcal{E}) - \frac{t}{4M^2} (F_2 \mathcal{H} - F_1 \mathcal{E}) + \cdots \right\} \sin \phi$

JLab12

- high luminosity
- $\Rightarrow \text{existing polarized } e^{-}$ - future polarized e^{+} (PEPPo collaboration)

EIC

see more on the website ⇒ of 2019 EIC User Group meeting (22-26 July 2019 Paris France)

Outline

- Experimental projections
 - Events generation
 - Pseudo-data analysis
 - Experimental observables
- CFFs extraction
 - Fitter algorithm
 - Decoupled singlet GPD H

Experimental projections I

[5] I. V. M. Vanderhaeghen, P. A. M. Guichon and M. Guidal, Phys. Rev D, 60, 094017 (1999).

Experimental projections II

Transfer all the events into (ξ', ξ) plane

$$\begin{split} \xi' &= \frac{Q^2 - {Q'}^2 + t/2}{2Q^2/x_{\rm B} - Q^2 - {Q'}^2 + t} \\ \xi &= \frac{Q^2 + {Q'}^2}{2Q^2/x_{\rm B} - Q^2 - {Q'}^2 + t} \end{split}$$

covering decoupled region where $|\xi'| < \xi$

Goal: access to $H(\xi', \xi, t, \mu^2)$

Binning

bins in ξ' and ξ - left figure 4 bins in -t - [0.0, 0.1, 0.3, 0.6, 1.0] 5 bins in Q^2 - [1.0, 1.5, 2.5, 3.5, 5.5, Q^2_{max}] 12 bins in ϕ - equally divided in 2π

Experimental projections III

example at $\xi \approx 0.11$

The observables are calculated with ideal detector at luminosity of 10^{36} cm⁻² · s⁻¹ for 50 days. In this case, the experimental projection of both the observables can be obtained with good precision.

CFFs extraction I

We've developed a fitter algorithm being a quasi-model-independent way to extract CFFs:

- taking the 8 CFFs as free parameters;
- knowing the well-established BH and DDVCS leading-twist amplitudes;
- to fit simultaneously the $\phi\mbox{-distributions}$ of several experimental observable at a fixed kinematics.

- smearing the central value for 6 ϕ according to a Gaussian probability distribution whose standard deviation is equal to the error bar.
- Fitting only σ_{UU} and $\Delta \sigma_{LU}$, only CFF \mathcal{H} can be well recovered, with σ_{UU} being particularly sensitive to the real part of \mathcal{H} and $\Delta \sigma_{LU}$ to the imaginary part.

CFFs extraction II

The simultaneous fit of σ_{UU} and $\Delta \sigma_{LU}$ allows us to access Im(\mathcal{H}) at a relative high efficiency level and to a somewhat lesser extent Re(\mathcal{H}).

For better extraction of the real part, positron beams are needed since the beam charge difference is sensitive to $\text{Re}(\mathcal{H})$.

CFFs extraction III

singlet GPD $H_+ = -\text{Im}(\mathcal{H})/\pi$

 $H_+(\xi',\xi,t)=H(\xi',\xi,t)-H(-\xi',\xi,t)$

- Finally, decoupled singlet GPD H₊ of proton can be obtained at fixed ξ.
- The information of GPDs obtained from DDVCS experiment could have a positive impact on the study of
- \rightarrow internal pressure distribution

$$\int x H(x,\xi,t) dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t);$$

 \rightarrow quark angular momentum

$$\int x \left[H^q(x,\xi,0) + E^q(x,\xi,0) \right] dx.$$

conclusion

- Based on the model-predicted experimental projection of DDVCS at JLab12, it is possible to obtain experiment observables with good precision.
- If only $\sigma_{\rm UU}$ and $\Delta \sigma_{\rm LU}$ are measured, valuable decoupled information of GPD *H* can still be extracted. For better extraction of the real part of CFF \mathcal{H} , positron beams are needed.

outlook

- Extraction of CFF \mathcal{H} with beam charge cross section difference $\Delta \sigma_{C}$;
- Improvement of the fitter program with respect to the time consuming.

Thank you!

backups

cross section at EIC I

12

cross section at EIC II

asymetries at EIC I

asymetries at EIC II

