

Baryon spectroscopy at LHCb

Ao Xu

Tsinghua University

on behalf of the LHCb collaboration

2019 Guilin, China 18th International Conference on Hadron Spectroscopy and Structure

16-21 August 2019, Guilin, China

Introduction

- Hadron spectrum is the primary observable of QCD
- LHCb has been providing propellants for heavy flavour spectroscopy
- Focus on very recent results of baryon spectroscopy
 - Beautiful baryons
 - ▶ Observation of new excited Σ_b^{\pm} states
 - Observation of new excited Λ_b states (NEW)
 - ▶ Observation of a new excited Ξ_b state
 - Doubly charmed baryons
 - ▶ Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$
 - ► A search for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$ (NEW)

The LHCb detector

A single-arm forward spectrometer at LHC

Hadron 2019

LHCb data taking

- A huge amount of $b\overline{b}$ and $c\overline{c}$ have been produced
 - About $10^{12} b\overline{b}$ and $10^{13} c\overline{c}$
- High *b*-baryon production fraction
 - $B: B_s: \Lambda_b \approx 4: 1: 2$

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

About 9 fb⁻¹ accumulated in Run1+Run2

Reconstruct heavy flavour decays at LHCb

BEAUTIFUL BARYONS

 $\Lambda_b^0 = udb$

 $\Sigma_{b}^{+} = uub \quad \Sigma_{b}^{0} = udb \quad \Sigma_{b}^{-} = ddb$ $\Xi_{b}^{0} = usb \quad \Xi_{b}^{-} = dsb$ $\Omega_{b}^{-} = ssb$

Σ_b and Σ_b^* at LHCb

- Study $\Lambda_b^0 \pi^{\pm}$ mass spectra
- With $\Lambda_b^0 \to \pi^- \Lambda_c^+ (\to p K^- \pi^+)$
- 230k Λ_b^0 candidates in 3 fb⁻¹
- Measure mass and width
 - Agree with CDF measurement
 - Improved by a factor of 5

Quantity	Value [MeV]
$m(\Sigma_b^-)$	$5815.64 \pm 0.14 \pm 0.24$
$m(\Sigma_b^{*-})$	$5834.73 \pm 0.17 \pm 0.25$
$m(\Sigma_b^+)$	$5810.55 \pm 0.11 \pm 0.23$
$m(\Sigma_b^{*+})$	$5830.28 \pm 0.14 \pm 0.24$
$\Gamma(\check{\Sigma}_{b}^{-})$	$5.33 \pm 0.42 \pm 0.37$
$\Gamma(\Sigma_b^{*-})$	$10.68 \pm 0.60 \pm 0.33$
$\Gamma(\check{\Sigma}_{b}^{+})$	$4.83 \pm 0.31 \pm 0.37$
$\Gamma(\Sigma_b^{*+})$	$9.34 \pm 0.47 \pm 0.26$

Observation of $\Sigma_b(6097)^{\pm}$

- Extend to higher mass region
 - With tighter $p_{\rm T}(\pi_s)$ requirement
- Fit the *Q*-value distributions
- Compatible with $\Sigma_b(1P)$ states
 - Expected in heavy-quark limit
 - Might be a superposition of several resonances

Quantity	Value [MeV]		
$m(\Sigma_b(6097)^-)$	$6098.0 \pm \ 1.7 \pm \ 0.5$		
$m(\Sigma_b(6097)^+)$	$6095.8 \pm \ 1.7 \ \pm \ 0.4$		
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm \ 4.2 \ \pm \ 0.9$		
$\Gamma(\Sigma_b(6097)^+)$	$31.0 \pm 5.5 \pm 0.7$		

Λ_b^0 excitations in $\Lambda_b^0 \pi^+ \pi^-$

- Study $\Lambda_b^0 \pi^+ \pi^-$ spectra
- With $\Lambda_b^0 \to \pi^- \Lambda_c^+ (\to p K^- \pi^+)$
- 900k Λ_b^0 candidates in 9 fb⁻¹
- Structure around 6.15 GeV
- Cross-check with
 - $\Lambda_b^0 \to p K^- J/\psi \ (\to \mu^+ \mu^-)$
- Investigate decay substructure
 - Mass above the $\varSigma_b^{(*)\mp}\pi^\pm$ threshold

Λ_b^0 excitations in $\Lambda_b^0 \pi^+ \pi^-$

- Split by $\Lambda_b^0 \pi^{\pm}$ invariant mass
 - Σ_b region
 - Σ_b^* region
 - Nonresonant (NR) region
- A simultaneous fit
 - Two-signal hypothesis with 7σ
- Almost degenerate narrow states

$$\begin{split} m_{\Lambda_{\rm b}(6146)^0} &= 6146.17 \pm 0.33 \pm 0.22 \pm 0.16 \,\,{\rm MeV}\,, \\ m_{\Lambda_{\rm b}(6152)^0} &= 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \,\,{\rm MeV}\,, \\ \Gamma_{\Lambda_{\rm b}(6146)^0} &= 2.9 \,\,\pm 1.3 \,\,\pm 0.3 \,\,\,{\rm MeV}\,, \\ \Gamma_{\Lambda_{\rm b}(6152)^0} &= 2.1 \,\,\pm 0.8 \,\,\pm 0.3 \,\,\,{\rm MeV}\,, \end{split}$$

Λ_b^0 excitations in $\Lambda_b^0 \pi^+ \pi^-$

- Study $\Lambda_b^0 \pi^{\pm}$ spectra
 - SPLOT technique
- Different couplings
 - $\Lambda_b(6152)^0$ to both Σ_b and Σ_b^*
 - $\Lambda_b(6146)^0$ primarily to Σ_b^*
- Consistent with the $\Lambda_b(1D)^0$

doublet of $J^P = \frac{3}{2}^+$ and $\frac{5}{2}^+$

- Observed mass
- Measured natural width
- Observed decay pattern

Observation of $E_b(6227)^-$

- Study the $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ spectra in 4.5 fb⁻¹
- The most massive baryon observed so far
 - $m_{\Xi_b(6227)^-} = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV}$
 - $\Gamma_{\Xi_b(6227)^-} = 18.1 \pm 5.4 \pm 1.8 \text{ MeV}$

PRL 121 (2018) 072002

Production ratios

$$R(\Lambda_{b}^{0}K^{-}) \equiv \frac{f_{\Xi_{b}(6227)^{-}}}{f_{\Lambda_{b}^{0}}} \mathcal{B}(\Xi_{b}(6227)^{-} \to \Lambda_{b}^{0}K^{-})$$
$$R(\Xi_{b}^{0}\pi^{-}) \equiv \frac{f_{\Xi_{b}(6227)^{-}}}{f_{\Xi_{b}^{0}}} \mathcal{B}(\Xi_{b}(6227)^{-} \to \Xi_{b}^{0}\pi^{-})$$

Quantity $[10^{-3}]$	$7,8{ m TeV}$	$13\mathrm{TeV}$
$R(\Lambda_b^0 K^-)$	$3.0\pm0.3\pm0.4$	$3.4\pm0.3\pm0.4$
$R(\Xi_b \pi^-)$	$47 \pm 10 \pm 7$	$22 \pm 6 \pm 3$

- Assuming $f_{\Xi_b^0} \approx 0.1 f_{\Lambda_b^0}$ $\mathcal{B}(\Xi_b(6227)^- \rightarrow \Lambda_b^0 K^-) / \mathcal{B}(\Xi_b(6227)^- \rightarrow \Xi_b^0 \pi^-) \approx 1$
- Candidate of $\Xi_b(1P)^-$ or $\Xi_b(2S)^-$ or the admixture?

DOUBLY CHARMED BARYONS

The doubly charmed baryons

- Two SU(4) 20-plets containing SU(3) triplets
 - $\mathcal{Z}_{cc}^+ = ccd, \, \mathcal{Z}_{cc}^{++} = ccu, \, \Omega_{cc}^+ = ccs$

• \mathcal{Z}_{cc}^{++} was observed in the $\Lambda_c^+ K^- \pi^+ \pi^+$ final state in 2017

• $m_{\Xi_{cc}^{++}} = 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \text{ MeV}$

PRL 119 (2017) 112001

• $\tau_{\Xi_{cc}^{++}} = 0.256_{-0.022}^{+0.024} \pm 0.014 \text{ ps}$

PRL 121 (2018) 052002

Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$

- Study $\Xi_c^+ (\rightarrow pK^-\pi^+)\pi^+$ spectrum
- Significance of 5.9σ
- Weighted average
 - $m_{\Xi_{cc}^{++}} = 3621.24 \pm 0.65 \pm 0.31 \text{ MeV}$

•
$$\mathcal{R} \equiv \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}; \Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}; \Lambda_{c}^{+} \to pK^{-}\pi^{+})}$$

•
$$\mathcal{R} = (3.5 \pm 0.9 \pm 0.3) \times 10^{-2}$$

• $\mathcal{B}(\mathcal{Z}_c^+ \to pK^-\pi^+) = (0.45 \pm 0.21 \pm 0.07)\%$ [Belle, Phys.Rev. D100 031101]

•
$$\frac{\mathcal{B}(\Xi_{cc}^{++}\to\Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++}\to\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \approx 0.5$$

PRL 121 (2018) 162002

A search for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

- Helpful to further understand the dynamics of Ξ_{cc}^{++}
- Efficient D⁺ trigger at LHCb
- Low branching fraction due to small phase space

A search for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$

- Study the $D^+pK^-\pi^+$ spectrum with 2016 data of 1.7 fb⁻¹
- With $D^+ \to K^- \pi^+ \pi^+$
- No significant signal is observed
- Upper limit on $\mathcal{R} \equiv \frac{\mathcal{B}(\Xi_{cc}^{++} \to D^+ pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}$

•
$$\mathcal{R} < 2.1 \times 10^{-2}$$
 at 95% CL

Prospects

- LHCb Upgrade I: installation ongoing
- LHCb Upgrade II: investigation started

Ao Xu (Tsinghua)

Hadron 2019

Projection of the yield

- LHCb data sample will be boosted
 - Observation of new states
 - Precise measurement of the observed states

		LHCb	
Decay mode	$23\mathrm{fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k
$B^+ \to X(3872) (\to \psi(2S)\gamma) K^+$	500	1k	$7\mathrm{k}$
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	$4\mathrm{M}$
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100
$\Lambda_b^0 ightarrow J\!/\psi p K^-$ [*]	680k	1.4M	8M
$\Xi_b^- \to J/\psi \Lambda K^-$	4k	10k	55k
$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600

[*] Updated according to the latest measurement

Summary

- LHCb has been and will continue providing propellants for heavy flavour spectroscopy
 - Observation of several beautifully excited baryons
 - Progress in the sector of doubly charmed baryons
 - The full Run1+Run2 data are being exploited
 - The ongoing upgrade will increase the instantaneous luminosity by a factor of 5 with fully software trigger

Stay Tuned

Backup slides

Σ_b and Σ_b^* at LHCb

- Study $\Lambda_b^0 \pi^{\pm}$ spectra
- With $\Lambda_b^0 \to \pi^- \Lambda_c^+ (\to p K^- \pi^+)$
- 230k Λ_b^0 candidates in 3 fb⁻¹

Λ_b excitations in $\Lambda_b^0 \pi^+ \pi^-$

- $\Lambda_b^0 \pi^+ \pi^-$ spectra
- With $\Lambda_b^0 \to \pi^- \Lambda_c^+ (\to p K^- \pi^+)$ and $\Lambda_b^0 \to p K^- J/\psi (\to \mu^+ \mu^-)$

