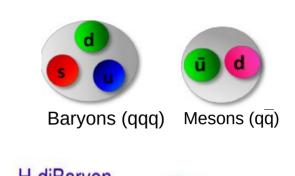
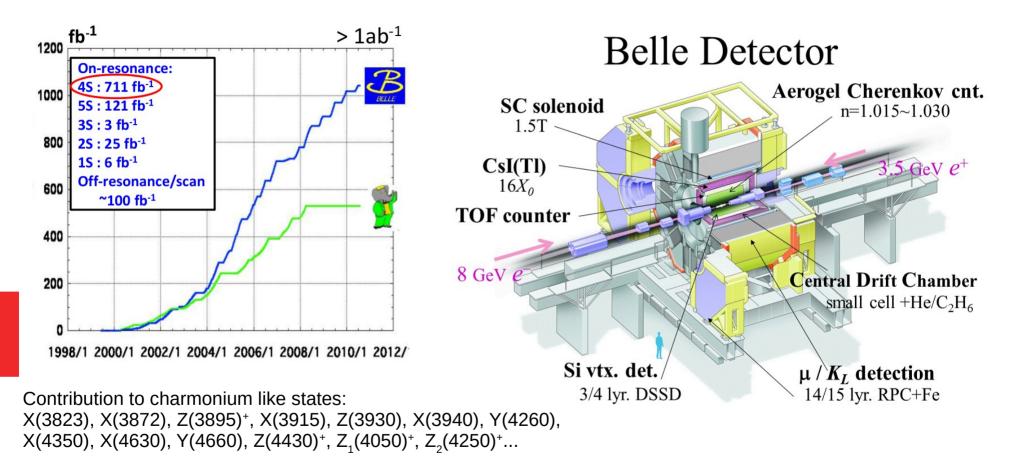
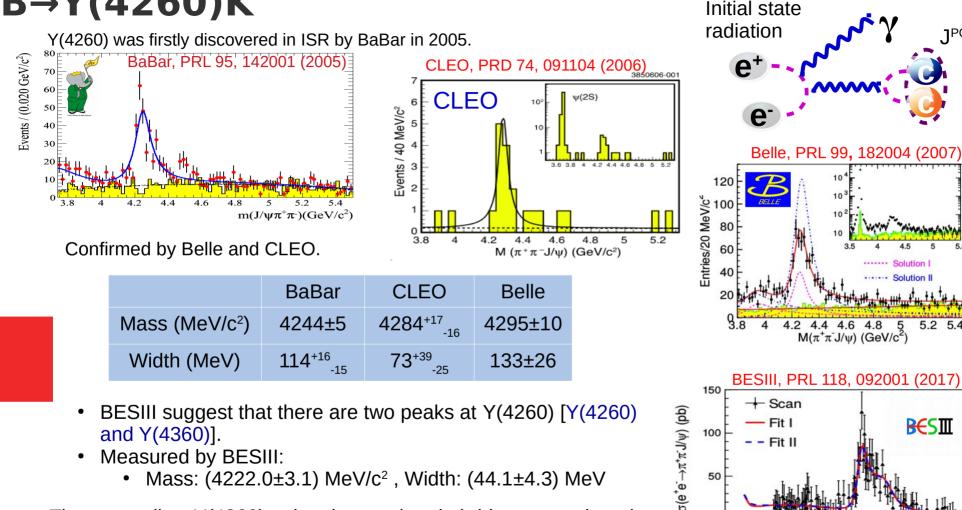


First evidence of $B \rightarrow h_c K$ and Recent Results on X and Y from Belle


Renu Garg On the behalf of Belle collaboration HADRON 2019

Introduction


Classification scheme for hadrons in terms of valance guarks. Hadrons are composed of mesons (qq, qqqq, ...) and baryons (qqq, qqqqq, ...).


- Pentaguark: H-diBaryon 11 S=+1 Baryon tightly bound 6-quark state Glueball Color-singlet multistates gluon bound state are not Tetraguark mesons tightly bound loosely bound diguark-diantiguark meson-antimeson "molecule" qq-gluon hybrid mesons Not observed in conventional matter. However, they should be allowed.
- Charmonium consists of two heavy c quarks and allows to study strong interactions.
- Charmonium-like predicted by potential models.

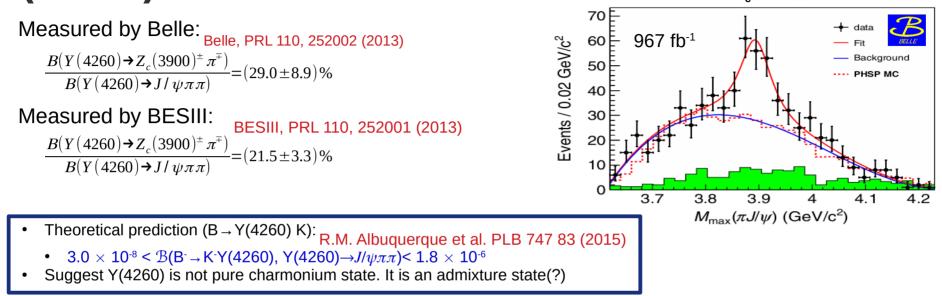
X(3872), Y(4260), Z_c(3900), Z⁺(4430), X(3915)... were found in last decade. Still their properties are not well understood.

cc like states at Belle experiment

The second generation of B-factories has been launched, and Belle II recorded the first collision on April, 2018

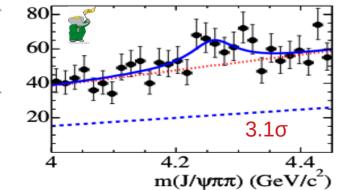
- BESIII suggest that there are two peaks at Y(4260) [Y(4260)] and Y(4360)].
- Measured by BESIII: •
 - Mass: (4222.0±3.1) MeV/c², Width: (44.1±4.3) MeV

Theory predicts Y(4260) to be charmonium-hybrid, tetraguark and S. L. Zhu PLB 625 (2005) admixture state.


5.2 5.4 - Fit I BESI - - Fit II 3.8 4.2 4.4 4.6 s (GeV)

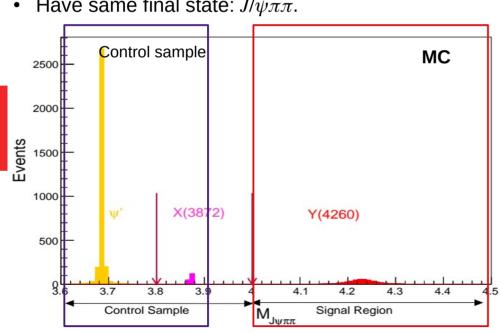
100

50


Belle, PRD 99, 071102(R) (2019)

1^{PC}· 1⁻⁻

Events / (15 MeV/c^2)


Measured by BaBar: $\mathcal{B}(B^{-} \rightarrow K^{-}Y(4260), Y(4260) \rightarrow J/\psi \pi \pi) < 2.9 \times 10^{-5}$

Invariant mass of Z₂(3900)[±]

Updated results using Belle data.

Selection criteria:

- Y(4260) reconstructed in $J/\psi \pi \pi$ mode •
- |dz| < 3.5cm& |dr| < 1.0 cm •
- J/ψ reconstruction: 3.07 (3.05) < M_{uu} (M_{eev}) < 3.13 GeV/c² •

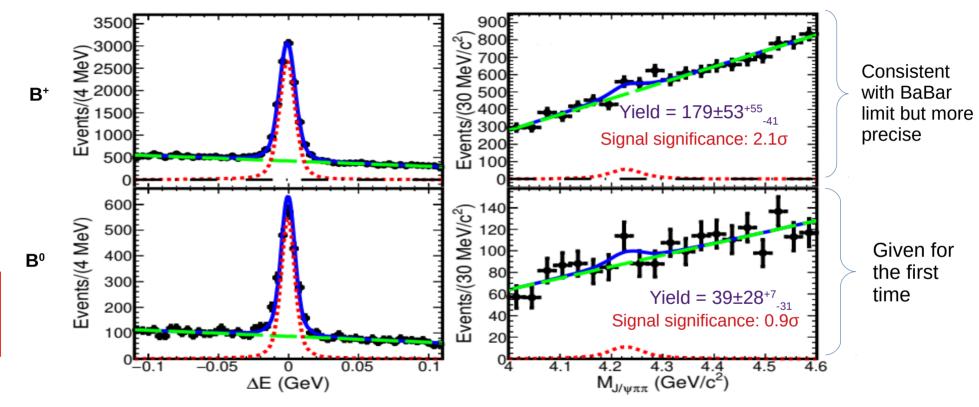
ys added within 0.5 mrad to $J/\psi \rightarrow e^+e^-$ mode Mass-constrained fit to J/ψ candidates to improve resolution.

- $B \rightarrow \psi' K$ and $B \rightarrow X(3872) K$ are good control sample. ٠
- Have same final state: $J/\psi\pi\pi$. ٠

```
To identify signal:
```

$$\Delta E = E_{B}^{*}-E_{beam}^{*}$$
$$M_{bc}^{}=\sqrt{(E_{beam}^{*2}-p_{B}^{*2})}$$

Signal is extracted from fit to the $_{\mathcal{P}}$ lot distribution of $M_{J/\psi\pi\pi}$.

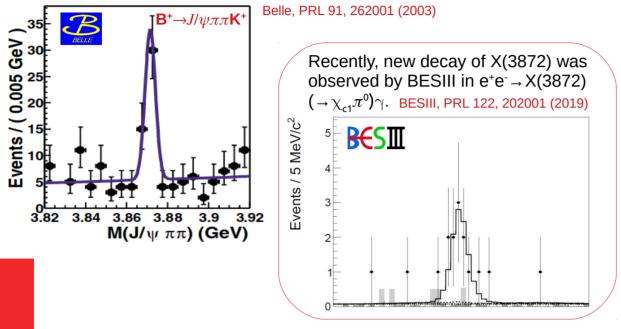

Control sample results:

```
\mathcal{B}(B^+ \rightarrow \psi(2S) \text{ K}^+) = [6.54 \pm 0.18(\text{stat.})] \times 10^{-4}
\mathcal{B}(B^0 \rightarrow \psi(2S) \text{ K}^0) = [5.25 \pm 0.45(\text{stat.})] \times 10^{-4}
\mathcal{B}(\mathsf{B}^+ \rightarrow \mathsf{X}(3872) \mathsf{K}^+, \mathsf{X}(3872) \rightarrow J/\psi \pi \pi) =
```

```
[9.07\pm0.64 \text{ (stat.)}] \times 10^{-6}
```

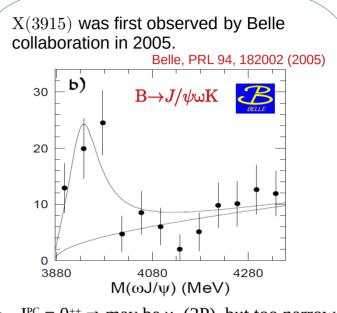
```
\mathcal{B}(\mathsf{B}^{0} \rightarrow \mathsf{X}(3872) \mathsf{K}^{0}, \mathsf{X}(3872) \rightarrow J/\psi \pi \pi) =
[4.97\pm1.03 \text{ (stat.)}] \times 10^{-6}
```

Agreement with Belle previous measurement.



No significant signal with current dataset

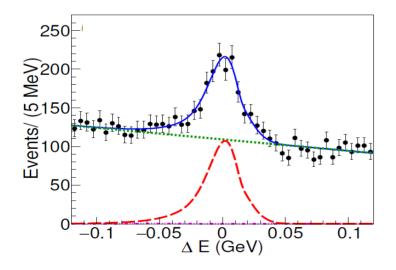
 $\mathcal{B}(B^+ \to Y(4260) \text{ K}^+, Y(4260) \to J/\psi\pi\pi) < 1.4 \times 10^{-5} (90\% \text{ C.L.})$ $\mathcal{B}(B^0 \to Y(4260) \text{ K}^0, Y(4260) \to J/\psi\pi\pi) < 1.7 \times 10^{-5} (90\% \text{ C.L.})$

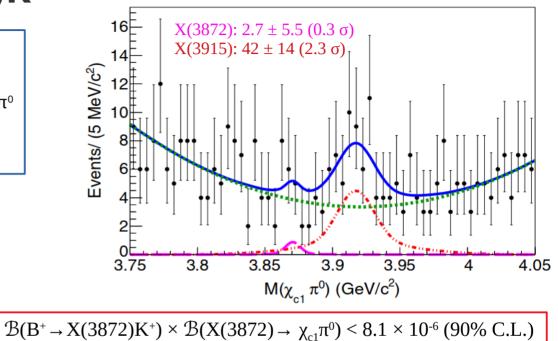

B→X(3872,3915)(→χ_{c1}π⁰)K

X(3872) was first observed by the Belle Collaboration in 2003.

- $J_{PC} = 1^{++} \Rightarrow may be \chi_{c1}(2P)$, single pionic transistion is suppressed due to isospin breaking.
- $\mathcal{B}(X(3872) \rightarrow \chi_{c1}\pi^0) / \mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-) = 0.88^{+0.33}_{-0.27} \pm 0.10$ is larger than $\mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^0) / \mathcal{B}(\psi(2S) \rightarrow J/\psi\pi^+\pi^-) = 3.66 \times 10^{-3}$
- Disfavors the $\chi_{c1}(2P)$ interpretation of X(3872).

Belle, PRD 99, 111101(R) (2019)

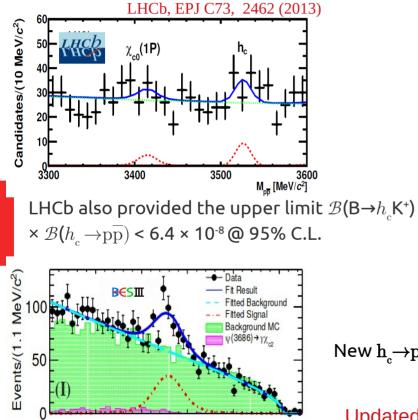

- $J^{PC} = 0^{++} \Rightarrow may be \chi_{c0}(2P)$, but too narrow and decay to $J/\psi\omega$ is not suppressed.
- If X(3915) is a non-conventional state, single pion transitions may be enhanced.

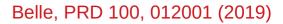

B→X(3872,3915)(→χ_{c1}π⁰)K

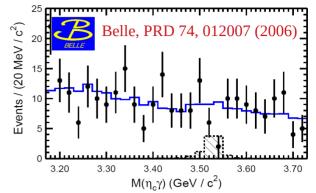
Selection:

- χ_{c1} reconstructed in $J/\psi\gamma$ mode
- Photon selection: $E_{\gamma} > 100 \text{ MeV}$, π^0 veto to reject γ from π^0 Veto on $B^+ \rightarrow \chi_{c1} K^{*+}$: 791.8 MeV < M($K^+\pi^0$) < 991.8 MeV.

UML fit to ΔE gives (806 ± 69) signal events (consistent with similar previous Belle study of $B^+ \rightarrow \chi_{c1} \pi^+ \pi^- K^+$). Belle, PRD 93, 052016 (2016)


 $\mathcal{B}(B^{+} \to X(3915)K^{+}) \times \mathcal{B}(X(3915) \to \chi_{c1}\pi^{0}) < 3.8 \times 10^{-5} (90\% \text{ C.L.})$ $\mathcal{B}(X(3872) \to \chi_{c1}\pi^{0}) / \mathcal{B}(X(3872) \to J/\psi\pi^{+}\pi^{-}) < 0.97 (90\% \text{ C.L.})$


Results are consistent with BESIII result.


Compatible with the interpretation of X(3872) as an admixture of D⁰D^{*0} molecule and χ_{c1} (2P) charmonium state.

$\mathbf{B} \rightarrow h_c \mathbf{K}$

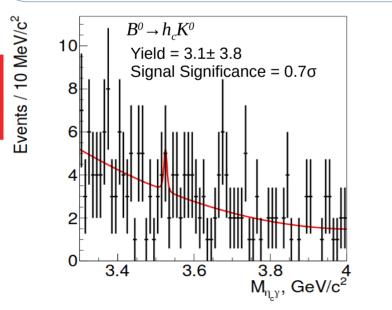
- Charmonium state, mass= (3525 ± 0.11) MeV and width= (0.7 ± 0.4) MeV.
- $B^+ \rightarrow \chi_{c0} K^+$, $B^+ \rightarrow \chi_{c2} K^+$ and $B^+ \rightarrow h_c K^+$ are suppressed by factorization.
- $\mathcal{B}(B \rightarrow h_c K^+)$ is expected to be of same order as of $\mathcal{B}(B^+ \rightarrow \chi_{c0} K^+)$. However, not observed so far!

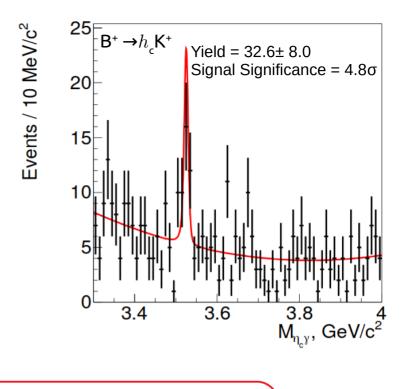
Belle set the upper limit on $\mathcal{B}(B \rightarrow h_{c}K^{+}) < 3.8$ ×10⁻⁵ using 253 fb⁻¹ [h_c \rightarrow η_c(η_c \rightarrow K_s⁰ K[±] π^{\mp} , pp)γ].

- Theoretical predictions: C. Meng, et al. hep-ph/06072201
 2.7×10⁻⁵ from QCD factorization

 - 3.6×10⁻⁵ from pQCD X. Q. Li, et al. PRD 74 114029 (2006)
 - $(3.1 \times 10^{-5} 5.7 \times 10^{-5})$ from QCD factorization including the charmonium bound-state scales. M. Beneke, et al. NPB 811 155 (2009)
- Theoretical predictions are slightly below the current experimental limits.

New $h_{\mu} \rightarrow pp\pi^{+}\pi^{-}$ is recently observed by BESIII.

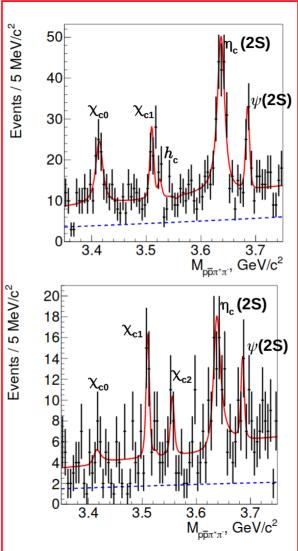

BESIII, PRD 99, 072008 (2019)


Updated results using Belle full data.

$\mathbf{B} \rightarrow h_{c} \mathbf{K}$

Analysis feature:

- $h_c \to \eta_c \gamma$ and $pp\pi^+\pi^-$ are used.
- η_c candidates are reconstructed in 10 decay channels (K+K_S⁰ π -, K+K- π^0 , K_S⁰K_S⁰ π^0 , K+K- η , K+K-K+K-, $\eta'(\rightarrow \eta\pi + \pi -)\pi + \pi -$, pp, pp π^0 , pp $\pi + \pi -$, and $\Lambda\Lambda$).
- η candidates are reconstructed in $\gamma\gamma$ and $\pi^+\pi^-\pi^0.$
- MVA is used for each channel to separate signal from bkg.
- Simultaneous UML fit to $h_c \rightarrow \eta_c \gamma$ signal and $h_c \rightarrow pp\pi^+\pi^-$ bkg and signal.



Evidence for $B^+ \to h_c K^+$ $\mathcal{B}(B^+ \to h_c K^+) = (3.7^{+1.0}_{-0.9} \pm 0.8) \times 10^{-5}$ No evidence is observed for $B^0 \to h_c K^0$ $\mathcal{B}(B^0 \to h_c K^0) < 1.4 \times 10^{-5}$ at 90% C.L.

 $\mathbf{B} \rightarrow h_{c} \mathbf{K}$

 $h_c \rightarrow pp\pi^+\pi^-$ in χ_{c1} region

State	$B^+ \to (c\bar{c})K^+$	$B^0 \to (c\bar{c})K^0_S$
η_c	20.1σ	12.5σ
J/ψ	33.9σ	20.8σ
χ_{c0}	6.0σ	0.6σ
χ_{c1}	4.9σ	4.5σ
χ_{c2}	0.3σ	2.5σ
$\eta_c(2S)$	12.3σ	5.9σ
$\psi(2S)$	5.0σ	2.8σ

Observation of the new $\eta_c(2S)$ decay channel: $\eta_c(2S) \rightarrow pp\pi^+\pi^-$!

Other charmonium signals are consistent with PDG.

Summary

 $B \rightarrow Y(4260) K:$ Belle, PRD 99, 071102 (R) (2019)

- Upper limit on $\mathcal{B}(B^+ \rightarrow Y(4260)K^+) \times \mathcal{B}(Y(4260) \rightarrow J/\psi\pi^+\pi^-) \le 1.4 \times 10^{-5}$ is consistent with BaBar but more precise.
- Upper limit on $\mathcal{B}(B^0 \rightarrow Y(4260)K^0) \times \mathcal{B}(Y(4260) \rightarrow J/\psi\pi^+\pi^-) \le 1.7 \times 10^{-5}$ is given for the first time.

 $B \rightarrow X(3872,3915)K:$

Belle, PRD 99, 111101 (R) (2019)

- Upper limits are set on the product branching fractions $\mathcal{B}(B^+ \rightarrow X(3872)K^+) \times \mathcal{B}(X(3872) \rightarrow \chi_{c1}\pi^0) < 8.1 \times 10^{-6}$ and $\mathcal{B}(B^+ \rightarrow X(3915)K^+) \times \mathcal{B}(X(3915) \rightarrow \chi_{c1}\pi^0) < 3.8 \times 10^{-5}$.
- Compatible with the interpretation of X(3872) as an admixture of D^0D^{*0} molecule and $\chi_{c1}(2P)$ charmonium state.
- Ratio $\mathcal{B}(X(3872) \rightarrow \chi_{c1}\pi^{0}) / \mathcal{B}(X(3872) \rightarrow J/\psi\pi^{+}\pi^{-}) < 0.97 (90\% \text{ C.L.})$ consistent with BESIII result.

$B \rightarrow h_c K$: Belle, PRD 100, 012001 (2019)

- Evidence of the decay $B^+ \rightarrow h_c K^+$ is found, and $\mathcal{B}(B^+ \rightarrow h_c K^+) = (3.7^{+1.0}_{-0.9} \pm 0.8) \times 10^{-5}$ is consistent with the existing limit and theoretical predictions.
- Upper limit is set on $\mathcal{B}(B^0 \rightarrow h_c K_{S^0}) \le 1.4 \times 10^{-5}$ at 90% C.L.
- First observation of $\eta_c(2S) \rightarrow pp\pi^+\pi^-$ decay with 12.1 σ significance.

Belle II is active and results can be measured more precisely.

Backup

$\mathbf{B} \rightarrow h_{c} \mathbf{K}$

A multivariate analysis is performed for each channel using the MLP from TMVA library.

- All channels: thrust angle of B daughters and remaining particles in the events, thrust angle of all tracks and photons, ratio of Fox-wolfram moment F_2/F_0 , the B production angle, vertex fit quality.
- h_c→η_cγ: h_c helicity angle, η_c mass, number of π^o candidates that include the h_c daughter photon as one of their daughters.
- $\eta_c \rightarrow K^+K_s^0\pi^-$, $\eta_c \rightarrow K^+K^-\pi^0$, $\eta_c \rightarrow K_s^0K_s^0\pi^0$: invariant masses of (K, π) combinations.
- Channels with the corresponding particles in the final state: K and p particle identification likelihoods.
- Channels with π⁰ and η: the π⁰ (η) mass, the minimal energy of the π⁰ (η) daughter photons in the lab frame, the number of π⁰ candidates that includes π⁰ (η) daughter photons as one of their daughters.
- Channels with $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ or $\eta' \rightarrow \eta \pi^{+}\pi^{-}$: the η (η') mass.