Excited light baryons from quark-gluon-level calculations

Jorge Segovia

Nanjing University, and Universidad Pablo de Olavide

18th International Conference on Hadron Spectroscopy and Structure Guilin, China, 16-21 August 2019

Emergence

Low-level rules producing high-level phenomena with enormous apparent complexity

Start from the QCD Lagrangian:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a + \frac{1}{2\xi} (\partial^\mu A_\mu^a)^2 + \partial^\mu \bar{c}^a \partial_\mu c^a + g f^{abc} (\partial^\mu \bar{c}^a) A_\mu^b c^c + \text{quarks}$$

And obtain:

- Solution of Solution of Solution and Solution Solution and Solution an
- Quark constituent masses and chiral symmetry breaking.
- Bound state formation: mesons, baryons, glueballs, hybrids, multiquark systems...
- Signals of confinement.

Emergent phenomena could be associated with dramatic, dynamically driven changes in the analytic structure of QCD's Green functions (propagators and vertices).

Off-shell Green's (correlation) functions

Even though they are:

- Gauge dependent.
- Renormalization point and scheme dependent.

B However:

- They capture characteristic features of the underlying dynamics, both perturbative and non-perturbative.
- When appropriately combined they give rise to physical observables.

Theory tool based on Dyson-Schwinger equations

Interesting features:

- $\bullet\,$ Inherently non-perturbative but, at the same time, captures the perturbative behavior \to accommodates the full range of physical momenta.
- Cover smoothly the full quark mass range, from the chiral limit to the heavy-quark domain.

Main caveats:

- Truncation of the infinite system of coupled non-linear integral equations that preserves the underlying symmetries of the theory.
- No expansion parameter \rightarrow no formal way of estimating the size of the omitted terms \leftrightarrow the projection of higher Green's functions on the lower ones is small.

Non-perturbative QCD: Dynamical generation of quark and gluon masses

Dressed-quark propagator in Landau gauge:

$$S^{-1}(p) = Z_2(i\gamma \cdot p + m) + \Sigma(p) = \left(\frac{Z(p^2)}{i\gamma \cdot p + \mathsf{M}(\mathsf{p}^2)}\right)^{-1}$$

- Mass generated from the interaction of quarks with the gluon-medium.
- Light quarks acquire a HUGE constituent mass.
- Responsible of the 98% of proton's mass, the large splitting between parity partners, ...

Dressed-gluon propagator in Landau gauge:

$$i\Delta_{\mu\nu} = -iP_{\mu\nu}\Delta(q^2), \quad P_{\mu\nu} = g_{\mu\nu} - q_{\mu}q_{\nu}/q^2$$

- An inflexion point at $p^2 > 0$.
- Breaks the axiom of reflexion positivity.
- Gluon mass generation \leftrightarrow Schwinger mechanism.

Non-perturbative QCD: Ghost saturation and three-gluon-vertex suppression

Dressed-ghost propagator in Landau gauge:

$$G^{ab}(q^2) = \delta^{ab} \, rac{\mathsf{J}(\mathsf{q}^2)}{q^2}$$

- No power-like singular behavior at $q^2 \rightarrow 0$.
- Good indication that $J(q^2)$ reaches a plateau.
- Saturation of ghost's dressing function.
- Three-gluon vertex form factor in Landau gauge: $(\propto$ the tree-level tensor structure)

$$\Gamma_{T,R}^{\operatorname{asym}}(q^2) \overset{q^2 \to 0}{\sim} F(0) \Big[\frac{\partial}{\partial q^2} \Delta_R^{-1}(q^2) - C_1(r^2) \Big]$$

- Appearance of (longitudinally coupled) massless poles.
- Suppression of the form factor in the so-called asymmetric momentum configuration.
- Plausible zero-crossing.

Non-perturbative QCD: Saturation at IR of process-independent effective-charge

D. Binosi *et al.*, Phys. Rev. D96 (2017) 054026.
 A. Deur *et al.*, Prog. Part. Nucl. Phys. 90 (2016) 1-74.

 ${\ensuremath{\,^{\tiny \mbox{\tiny S}}}}$ Data = running coupling defined from the Bjorken sum-rule.

$$\int_{0}^{1} dx \left[g_{1}^{p}(x,k^{2}) - g_{1}^{n}(x,k^{2}) \right] = \frac{g_{A}}{6} \left[1 - \frac{1}{\pi} \alpha_{g_{1}}(k^{2}) \right]$$

- Curve determined from combined continuum and lattice analysis of QCD's gauge sector (massless ghost and massive gluon).
- The curve is a running coupling that does NOT depend on the choice of observable.
 - No parameters.
 - No matching condition.
 - No extrapolation.
- It predicts and unifies an enormous body of empirical data via the matter-sector bound-state equations.

Perturbative regime:

$$\begin{aligned} \alpha_{g_1}(k^2) &= \alpha_{\overline{\mathsf{MS}}}(k^2) \Big[1 + 1.14 \alpha_{\overline{\mathsf{MS}}}(k^2) + \dots \Big] \\ \hat{\alpha}_{\mathsf{PI}}(k^2) &= \alpha_{\overline{\mathsf{MS}}}(k^2) \Big[1 + 1.09 \alpha_{\overline{\mathsf{MS}}}(k^2) + \dots \Big] \end{aligned}$$

The bound-state problem in quantum field theory

Extraction of hadron properties from poles in qq, qqq, qqqq. scattering matrices

Use scattering equation (inhomogeneous BSE) to obtain T in the first place: $T = K + KG_0T$

Homogeneous BSE for **BS amplitude:**

Baryons. A 3-body bound state problem in quantum field theory:

Faddeev equation in rainbow-ladder truncation

Faddeev equation: Sums all possible quantum field theoretical exchanges and interactions that can take place between the three dressed-quarks that define its valence quark content.

9/27

Diquarks inside baryons

The attractive nature of quark-antiquark correlations in a colour-singlet meson is also attractive for $\bar{3}_c$ quark-quark correlations within a colour-singlet baryon

Diquark correlations:

- A tractable truncation of the Faddeev equation.
- In $N_c = 2$ QCD: diquarks can form colour singlets and are the baryons of the theory.
- In our approach: Non-pointlike colour-antitriplet and fully interacting.

Diquark-quark approximation:

Meson BSE

Diguark BSE

real Owing to properties of charge-conjugation, a diquark with spin-parity J^P may be viewed as a partner to the analogous J^{-P} meson:

$$\Gamma_{q\bar{q}}(p;P) = -\int \frac{d^4q}{(2\pi)^4} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_{\mu} S(q+P) \Gamma_{q\bar{q}}(q;P) S(q) \frac{\lambda^a}{2} \gamma_{\nu}$$

$$\Gamma_{qq}(p;P) C^{\dagger} = -\frac{1}{2} \int \frac{d^4q}{(2\pi)^4} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_{\mu} S(q+P) \Gamma_{qq}(q;P) C^{\dagger} S(q) \frac{\lambda^a}{2} \gamma_{\nu}$$

s Whilst no pole-mass exists, the following mass-scales express the strength and range of the correlation:

$$m_{[ud]_{0^+}} = 0.7 - 0.8 \,\text{GeV}, \quad m_{\{uu\}_{1^+}} = 0.9 - 1.1 \,\text{GeV}, \quad m_{\{dd\}_{1^+}} = m_{\{ud\}_{1^+}} = m_{\{uu\}_{1^+}}$$

In Biquark correlations are soft, they possess an electromagnetic size:

$$r_{[ud]_{0^+}} \gtrsim r_{\pi}, \qquad r_{\{uu\}_{1^+}} \gtrsim r_{\rho}, \qquad r_{\{uu\}_{1^+}} > r_{[ud]_{0^+}}$$

Diquark species

The quark+diquark structure of the nucleon

Faddeev equation in the quark-diquark picture

Dominant piece in nucleon's eight-component Poincaré-covariant Faddeev amplitude: $s_1(|p|, \cos \theta)$

- There is strong variation with respect to both arguments in the quark+scalar-diquark relative momentum correlation.
- Support is concentrated in the forward direction, cos θ > 0. Alignment of p and P is favoured.
- Amplitude peaks at $(|p| \sim M_N/6, \cos \theta = 1)$, whereat $p_q \sim p_d \sim P/2$ and hence the *natural* relative momentum is zero.
- In the anti-parallel direction, cos θ < 0, support is concentrated at |p| = 0, i.e. p_q ~ P/3, p_d ~ 2P/3.

Shu-Sheng Xu et al., Phys. Rev. D92 (2015) 114034

The quark+diquark structure of any baryon

A baryon can be viewed as a Borromean bound-state, the binding within which has two contributions:

- Formation of tight diquark correlations.
- Quark exchange depicted in the shaded area.

The exchange ensures that diquark correlations within the baryon are fully dynamical: no quark holds a special place.

The rearrangement of the quarks guarantees that the baryon's wave function complies with Pauli statistics.

^{EST} Modern diquarks are different from the old static, point-like diquarks which featured in early attempts to explain the so-called missing resonance problem.

^{ES} The number of states in the spectrum of baryons obtained is similar to that found in the three-constituent quark model, just as it is in today's LQCD calculations.

Modern diquarks enforce certain distinct interaction patterns for the singly- and doubly-represented valence-quarks within the baryon.

Three-quark cf. quark-diquark

G. Eichmann *et al.*, Phys. Rev. D94 (2016) 094033;
 Few Body Syst. 58 (2017) 81;
 Prog. Part. Nucl.Phys. 91 (2016) 1-100

Spectrum in one to one agreement with experiment.

- Sorrect level ordering (without coupled-channels effects).
- Three-body agrees with quark-diquark where applicable, __ , _

15/27

Level of progress in 2019

		level of complexity						
		I) NJL/contact interaction	II) Quark-diquark model	III) DSE	(RL)	IV) DSE (bRL)		
uwop/dn	$ \begin{array}{c} + & N, \Delta \text{ masses} \\ \parallel & N, \Delta \text{ em. FFs} \\ \hline \Delta & N \to \Delta \gamma \\ \hline + & N^*, \Delta^* \text{masses} \\ \hline \Delta & \gamma N \to N^* / \Delta^* \\ \hline \parallel & N^*, \Delta^* \text{masses} \end{array} $	✓ ✓ ✓ ✓ ✓			√ √ √ √	√ 		
strange	$ \begin{array}{c} \prod\limits_{\mathbf{Q}_{*}} & \gamma N \rightarrow N^{*}/\Delta^{*} \\ & \text{ground states} \\ & \text{excited states} \\ & \text{em. FF} \\ & \text{TFFs} \end{array} $	√ √	√ √	1 1 1	V V V V			
c/b	ground states excited states	Cloet, Thomas, Roberts, Segovia, Chen, et al.	Oettel, Alkofer,Bloch, Roberts, Segovia, Chen, et al.	Eichmann, Alkofer, Krassnigg, Nicmorus, Sanchis-Alepuz, CF	Eichmann, Alkofer, Sanchis-Alepuz, CF, Qin, Roberts	Sanchis-Alepuz, Williams, CF		

$\Lambda-\Sigma$ mass splitting

Whilst the Λ and Σ are associated with the same combination of valence-quarks, their spin-flavor wave functions are different.

₽

 Λ contains more of the (lighter) scalar diquark correlations than Σ

$$u_{\Lambda} = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2} \, s[ud]_{0^+} \\ d[us]_{0^+} - u[ds]_{0^+} \\ d\{us\}_{1^+} - u\{ds\}_{1^+} \end{bmatrix} \leftrightarrow \begin{bmatrix} s_{\Lambda}^1 \\ s_{\Lambda}^{[2,3]} \\ a_{\Lambda}^{[6,8]} \end{bmatrix}; \quad u_{\Sigma} = \begin{bmatrix} u[us]_{0^+} \\ s\{uu\}_{1^+} \\ u\{us\}_{1^+} \end{bmatrix} \leftrightarrow \begin{bmatrix} s_{\Sigma}^2 \\ a_{\Sigma}^2 \\ a_{\Sigma}^2 \end{bmatrix}$$

	N	٨	Σ	Ξ	Δ	Σ*	Ξ*	Ω
The.	1.19(13)	1.37(14)	1.41(14)	1.58(15)	1.35(12)	1.52(14)	1.71(15)	1.93(17)
Exp.	0.94	1.12	1.19	1.31	1.23	1.38	1.53	1.67
The.	1.73(10)	1.85(09)	1.88(11)	1.99(11)	1.79(12)	1.93(11)	2.08(12)	2.23(13)
Exp.	1.44(03)	$1.51\substack{+0.10\\-0.04}$	1.66(03)	-	1.57(07)	1.73(03)	-	-

C. Chen et al., accepted by Phys. Rev. D, arXiv:nucl-th/1901.04305

17/27

Masses of the octet and decuplet

- The computed masses are uniformly larger than the corresponding empirical values.
- The quark-diquark kernel omits all resonant contributions associated with meson-baryon final state interactions, which typically generate a measurable reduction.
- The Faddeev equations analyzed to produce the results should be understood as producing the dressed-quark core of the bound state, not the completely dressed and hence observable object.

18/27

Angular momenta of the octet and decuplet (I)

L content	$N_{n=0}$	$N_{n=1}$	$\Lambda_{n=0}$	$\Lambda_{n=1}$	$\Sigma_{n=0}$	$\Sigma_{n=1}$	$\Xi_{n=0}$	$\Xi_{n=1}$
<i>S</i> , <i>P</i> , <i>D</i>	1.19	1.73	1.37	1.85	1.41	1.88	1.58	1.99
-, P, D	_	_	-	-	-	-	-	-
S, -, D	1.24	1.71	1.40	1.83	1.42	1.84	1.59	1.97
S, P, -	1.20	1.74	1.37	1.85	1.41	1.89	1.58	1.99
S, -, -	1.24	1.71	1.40	1.83	1.42	1.84	1.59	1.97
L content	$\Delta_{n=0}$	$\Delta_{n=1}$	$\Sigma_{n=0}^{*}$	$\Sigma_{n=1}^{*}$	$\Xi_{n=0}^{*}$	$\Xi_{n=1}^{*}$	$\Omega_{n=0}$	$\Omega_{n=1}$
L content S, P, D, F	$\Delta_{n=0}$ 1.35	$\Delta_{n=1}$ 1.79	$\frac{\Sigma_{n=0}^{*}}{1.52}$	$\frac{\Sigma_{n=1}^{*}}{1.93}$	$\Xi_{n=0}^{*}$ 1.71	$\Xi_{n=1}^{*}$ 2.08	Ω _{n=0} 1.93	Ω _{n=1} 2.23
$\frac{L \text{ content}}{S, P, D, F}$	$\Delta_{n=0}$ 1.35	$\Delta_{n=1}$ 1.79 -	$\frac{\sum_{n=0}^{*}}{1.52}$	$\frac{\Sigma_{n=1}^{*}}{1.93}$	$\Xi_{n=0}^{*}$ 1.71 -	$\Xi_{n=1}^{*}$ 2.08 -	$\Omega_{n=0}$ 1.93 -	Ω _{n=1} 2.23
$ \frac{L \text{ content}}{S, P, D, F} \\ -, P, D, F \\ S, -, D, F $	$\begin{array}{c c} \Delta_{n=0} \\ \hline 1.35 \\ \hline - \\ 1.36 \end{array}$	$\Delta_{n=1}$ 1.79 - 1.75		$ \frac{\sum_{n=1}^{*}}{1.93} - 1.90 $		$\Xi_{n=1}^{*}$ 2.08 - 2.06	$\Omega_{n=0}$ 1.93 - 1.93	$\Omega_{n=1}$ 2.23 - 2.22
		$\Delta_{n=1}$ 1.79 - 1.75 1.82	$ \frac{\sum_{n=0}^{*}}{1.52} - 1.52 1.52 1.52 1.52 $	$ \frac{\sum_{n=1}^{*}}{1.93} \\ - \\ 1.90 \\ 1.95 $		$\Xi_{n=1}^{*}$ 2.08 - 2.06 2.09	$\Omega_{n=0}$ 1.93 - 1.93 1.93	$\Omega_{n=1}$ 2.23 - 2.22 2.24
L content S, P, D, F -, P, D, F S, -, D, F S, P, -, F S, P, D, -	$\begin{array}{c c} & \Delta_{n=0} \\ \hline & 1.35 \\ \hline & - \\ \hline & 1.36 \\ \hline & 1.35 \\ \hline & 1.35 \\ \hline \end{array}$	$\begin{array}{c} \Delta_{n=1} \\ 1.79 \\ - \\ 1.75 \\ 1.82 \\ 1.79 \end{array}$	$ \frac{\sum_{n=0}^{*}}{1.52} - 1.52 1.52 1.52 1.52 $	$ \frac{\sum_{n=1}^{*}}{1.93} \\ - \\ 1.90 \\ 1.95 \\ 1.93 $	$ \frac{\Xi_{n=0}^{*}}{1.71} - 1.71 1.71 1.71 1.71 $		$\Omega_{n=0}$ 1.93 - 1.93 1.93 1.93 1.93	$\Omega_{n=1}$ 2.23 - 2.22 2.24 2.23

- \mathbb{I} No state is generated by the Faddeev equation unless S-wave components are contained in the wave function.
- This observation provides support in quantum field theory for the constituent quark model classification of these systems.
- The P- and D-wave components play a measurable role in, respectively, octet and decuplet baryons.

Angular momenta of the octet and decuplet (I)

L content	$N_{n=0}$	$N_{n=1}$	$\Lambda_{n=0}$	$\Lambda_{n=1}$	$\Sigma_{n=0}$	$\Sigma_{n=1}$	$\Xi_{n=0}$	$\Xi_{n=1}$
S, P, D	1.19	1.73	1.37	1.85	1.41	1.88	1.58	1.99
-, P, D	—	_	—	—	_	_		-
$5, -, \mathbf{D}$	1.24	1.11	1.40	1.03	1.42	1.84	1.59	1.97
S, P, -	1.20	1.74	1.37	1.85	1.41	1.89	1.58	1.99
S, -, -	1.24	1.71	1.40	1.83	1.42	1.84	1.59	1.97
L content	$\Delta_{n=0}$	$\Delta_{n=1}$	$\Sigma_{n=0}^{*}$	$\Sigma_{n=1}^{*}$	$\Xi_{n=0}^{*}$	$\Xi_{n=1}^{*}$	$\Omega_{n=0}$	$\Omega_{n=1}$
L content S, P, D, F	$\begin{array}{c c} \Delta_{n=0} \\ \hline 1.35 \end{array}$	$\Delta_{n=1}$ 1.79	$\frac{\Sigma_{n=0}^{*}}{1.52}$	$\frac{\Sigma_{n=1}^{*}}{1.93}$	$\Xi_{n=0}^{*}$ 1.71	$\Xi_{n=1}^{*}$ 2.08	$\Omega_{n=0}$ 1.93	Ω _{n=1} 2.23
L content S, P, D, F -, P, D, F	$\begin{array}{c c} \Delta_{n=0} \\ \hline 1.35 \\ \hline \end{array}$	$\frac{\Delta_{n=1}}{1.79}$	$\frac{\sum_{n=0}^{*}}{1.52}$	$\frac{\sum_{n=1}^{*}}{1.93}$	$\frac{\Xi_{n=0}^{*}}{1.71}$	$\Xi_{n=1}^{*}$ 2.08	$\Omega_{n=0}$ 1.93	Ω _{n=1} 2.23
$ \begin{array}{r} L \text{ content} \\ S, P, D, F \\ \overline{}, P, D, F \\ \overline{}, -, \overline{}, F \\ \overline{}, -, \overline{}, F \end{array} $	$\begin{array}{c c} \Delta_{n=0} \\ \hline 1.35 \\ \hline - \\ 1.30 \end{array}$	$\Delta_{n=1}$ 1.79 -	$\Sigma_{n=0}^{*}$ 1.52 -	Σ _{n=1} 1.93 - 1.90	$\Xi_{n=0}^{*}$ 1.71 -	Ξ _{n=1} 2.08 - 2.00	Ω _{n=0} 1.93 -	$\Omega_{n=1}$ 2.23 - 2.22
$ \begin{array}{r} L \text{ content} \\ S, P, D, F \\ \overline{}, P, D, F \\ \overline{}, -, P, D, F \\ S, -, D, F \\ S, P, -, F \\ S, P, -, F $	$ \begin{array}{c c} \Delta_{n=0} \\ \hline 1.35 \\ \hline 1.30 \\ 1.35 \\ \hline 1.35 \\ \hline \end{array} $	$\Delta_{n=1}$ 1.79 - 1.75 1.82	$\frac{\sum_{n=0}^{*}}{1.52}$	$\frac{\sum_{n=1}^{*}}{1.93}$ - 1.90 1.95		Ξ _{n=1} 2.08 - 2.00 2.09	$\Omega_{n=0}$ 1.93 - 1.93 1.93	$\Omega_{n=1}$ 2.23 - 2.22 2.24
	$\begin{array}{c c} & \Delta_{n=0} \\ \hline 1.35 \\ \hline 1.30 \\ 1.35 \\ 1.35 \\ 1.35 \end{array}$	$\Delta_{n=1}$ 1.79 - 1.75 1.82 1.79	$\frac{\sum_{n=0}^{*}}{1.52}$	$\frac{\sum_{n=1}^{*}}{1.93}$	$\frac{\Xi_{n=0}^{*}}{1.71}$ 1.71 1.71 1.71 1.71	$\Xi_{n=1}^{*}$ 2.08 - 2.00 2.09 2.08	$\Omega_{n=0}$ 1.93 - 1.93 1.93 1.93	$\Omega_{n=1}$ 2.23 - 2.22 2.24 2.23

- \blacksquare No state is generated by the Faddeev equation unless S-wave components are contained in the wave function.
- This observation provides support in quantum field theory for the constituent quark model classification of these systems.
- The P- and D-wave components play a measurable role in, respectively, octet and decuplet baryons.

Angular momenta of the octet and decuplet (II)

Angular momenta of the octet and decuplet (II)

Jorge Segovia (jsegovia@upo.es)

Radial excitations in quantum field theory

21/27

Wave function decomposition: N(1440) cf. $\Delta(1600)$

	N(940)	N(1440)	Δ(1232)	$\Delta(1600)$
scalar	62%	62%	_	_
pseudovector	29%	29%	100%	100%
mixed	9%	9%	_	-
S-wave	0.76	0.85	0.61	0.30
P-wave	0.23	0.14	0.22	0.15
D-wave	0.01	0.01	0.17	0.52
<i>F</i> -wave	_	_	\sim 0	0.02

N(1440)

- Roper's diquark content are almost identical to the nucleon's one.
- It has an orbital angular momentum composition which is very similar to the one observed in the nucleon.

$\Delta(1600)$

- Δ(1600)'s diquark content are almost identical to the Δ(1232)'s one.
- It shows a dominant ℓ = 2 angular momentum component with its S-wave term being a factor 2 smaller.

医下颌 医下

The presence of all angular momentum components compatible with the baryon's total spin and parity is an inescapable consequence of solving a realistic Poincaré-covariant Faddeev equation

22/27

э

Consequences on, e.g., EM trasition form factors

Observations:

N(1440): Our calculation agrees quantitatively in magnitude and qualitatively in trend with the data on $x \gtrsim 2$.

N(1440): The mismatch between our prediction and the data on $x \lesssim 2$ is due to meson cloud contribution.

 $\Delta(1600)$: It is positive defined in the whole range of photon momentum and decreases smoothly with larger Q^2 -values $\rightarrow D$ -wave dominance.

J. Segovia *et al.*, Phys. Rev. Lett. 115 (2015) 171801, arXiv:nucl-th/1504.04386 Y. Lu *et al.*, Phys. Rev. D100 (2019) 034001, arXiv:nucl-th/1904.03205

Parity partners at a glance (I)

- The N(940) and N(1440) are primarily S-wave in nature, since they are not supported by the Faddeev equation unless S-wave components are contained in the wave function.
- The N(1535) and N(1650) are essentially P-wave in character, since they are not supported by the Faddeev equation unless P-wave components are contained in the wave function.
- These observations provide (again) support in quantum field theory for the constituent-quark model classifications of these systems.

L content	N_0^+	N_1^+	N_0^-	N_1^-
<i>S</i> , <i>P</i> , <i>D</i>	1.19	1.73	1.83	1.91
-, P, D	-	_	1.89	1.98
S, -, D	1.24	1.71	_	_
S, P, -	1.20	1.74	1.83	1.91
<u>S, -, -</u>	1.24	1.71	_	_
-, P , -	_	_	1.90	1.98

Masses of the quark core against values determined for the meson-undressed bare-excitations

	m _N	$m_{N(1440)}^{1/2^+}$	$m_{N(1535)}^{1/2^{-}}$	$m_{N(1650)}^{1/2^{-}}$
herein	1.19	1.73	1.83	1.91
M_B^0		1.76	1.80	1.88

L. Ya et al., Phys. Rev. C96 (2017) no.1, 015208, arXiv:nucl-th/1705.03988.

C. Chen et al., Phys. Rev. D97 (2018) 034016, arXiv:nucl-th/1711.03142.

Parity partners at a glance (II)

- Again, the two lightest 1/2⁺ doublets are predominantly S-wave in character, whereas the negative parity states are chiefly P-wave. In all cases the D-wave components are negligible.
- Solution N(940) and N(1440) are mostly constituted by scalar and pseudovector diquarks and $g_{DB} < 1$ has little impact on the nucleon and Roper, so we do not draw $g_{DB} = 1$ results.
- $g_{DB} < 1$ has a significant effect on the structure of the negative parity baryons, it increases both the effective energy-cost (mass) of positive parity diquarks and the fraction of pseudoscalar- and vector-diquarks they contain.

C. Chen et al., Phys. Rev. D97 (2018) 034016, arXiv:nucl-th/1711.03142.

Extension to heavy quark sectors

Take home messages:

- Baryon spectrum: fair agreement with experiment!
- Results for up/down, strange and heavy quarks.
- Three-body vs diquark-quark: good agreement.

QFT combined with quark-diquark picture:

- The running of the strong coupling constant which is expressed in e.g. the momentum dependence of the dressed-quark mass produces DCSB.
- DCSB and its correct implementation produces pions as well as nonpointlike and fully-dynamical diquark correlations inside baryons.
- The Faddeev kernel ensures that every valence-quark participates actively in all diquark correlations to the fullest extent allowed by kinematics and symmetries.
- Poincaré covariance demands the presence of dressed-quark orbital angular momentum in the baryon.

-