

CP violation in charmless b decays at LHCb

Wenbin Qian(钱文斌) University of Chinese Academy of Sciences (中国科学院大学) On behalf of the LHCb collaboration

Charmless b decays

No charm quark in final state particles $\sim 1\%$ of b decays

- Competitive contributions from tree-level and loop-level diagrams, leading to large CPV
- New physics contributions easy to enter loop-level diagrams, smoking gun for NP search

• Selected highlights on new progresses from LHCb

+ New Physics

New results from $B \rightarrow VV$ decays

ϕ_s measurements

- ϕ_s : mixing-induced CPV phase in B_s^0 decays
- Depending on final states (quark-level diagram) difference, we have: $\phi_s^{c\bar{c}s}$, $\phi_s^{s\bar{s}s}$, $\phi_s^{d\bar{d}s}$ etc.

• SM prediction for $\phi_s^{c\bar{c}s} = -36.8^{+1.0}_{-0.8}$ mrad, and $\phi_s^{s\bar{s}s}$, $\phi_s^{d\bar{d}s}$ very small; NP can

contribute and enhance them

Xuesong's talk for new results on $\phi_s^{c\bar{c}s}$ from LHCb

$\phi_s^{s\overline{s}s}$ and $\phi_s^{d\overline{d}s}$ results

LHCb Prelimina

Candidates / (0.314 π

Candidates / 0.100

20

-0.5

Decay time [ps

0.5

cosθ.

200

• LHCb has performed measurements of $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ with 3 fb⁻¹ data and gives $\phi_s^{s\bar{d}d} = -0.10 \pm 0.13 \pm 0.14$ rad

Candidates / (0.4850 ps

-0.5

- New update of $B_s^0 \rightarrow \phi \phi$ with 4.9 fb⁻¹ data (~8500 signals) and gives $\phi_s^{s\bar{s}s} = -0.073 \pm 0.115 \pm 0.027$ rad
- Complicated angular analysis needed to extract CP information
- LHCb prospects for ϕ_s in different processes:

----- V+V wave

----- S+S wave

····· V+S wave

0.5

cos_θ.

f_L results

- Large f_L expected for tree-dominated $B \rightarrow VV$ decays while not fulfilled for penguindominated decays; Interesting place to study strong-interaction effect
- f_L been measured in several $B \rightarrow VV$ decays by the LHCb experiment

Decays	f_L	A _{cp}	
$B^0 \to \rho(770)^0 K^*(892)^0$	$0.164 \pm 0.015 \pm 0.022$	$-0.62 \pm 0.09 \pm 0.09$	3 fb ⁻¹
$B^0 \rightarrow \omega K^* (892)^0$	$0.68 \pm 0.17 \pm 0.16$	$-0.13 \pm 0.27 \pm 0.13$	3 fb ⁻¹
$B^0 \to \overline{K^*}(892)^0 K^*(892)^0$	$0.724 \pm 0.051 \pm 0.016$		3 fb ⁻¹
$B_s^0 \to \overline{K^*}(892)^0 K^*(892)^0$	$0.240 \pm 0.031 \pm 0.025$		3 fb ⁻¹
$B_s^0 \to \phi \phi$	$0.381 \pm 0.007 \pm 0.012$	4	.9 fb ⁻¹
$B^0 \to \phi K^*(892)^0$	$0.497 \pm 0.019 \pm 0.015$	$-0.003 \pm 0.038 \pm 0.005$	1 fb ⁻¹

• These results, together with pQCD and QCDF predictions, will help us understand better underlying mechanism

New results from $B \rightarrow 3h$ decays

CPV in charmless B decays

- Interesting CPV pattern seen on Dalitz plot of $B \rightarrow h'^+h^+h^-$, $h = K, \pi$
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV

• Now, amplitude analyses of $B^+ \to \pi^+ \pi^+ \pi^-$ and $B^+ \to \pi^+ K^+ K^-$, with much larger statistics than previous B-factory analyses, has been performed

CPV over Dalitz plot

• Two competitive contributions needed to have CPV

 $A = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$

$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

• Distributions over PHSP offer possibilities to exam different sources of CPV

Dalitz plot analysis with CPV

• Amplitude with CPV is modelled as

$$A(\Phi_3) = \sum_i A_i(\Phi_3) = \sum_i c_i F_i(\Phi_3)$$
 Strong dynamics
$$\bar{A}(\bar{\Phi}_3) = \sum_i \bar{c}_i F_i(\Phi_3)$$
 Strong + weak

• CPV then described as

$$c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i)$$

$$\bar{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i)$$

• Observables:

$$\mathcal{F}_{i} \equiv \frac{\int d\Phi_{3} |A_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |A(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}(\Phi_{3})|^{2}} \qquad \mathcal{A}_{CP}^{i} \equiv \frac{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} - \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}$$

Dalitz plot analysis with $B \rightarrow KK\pi$

PRD 90 (2014) 112004 arXiv:1905.09244

control channel $B^+ \rightarrow J/\psi K^+$

• Global CPV observed previous: $A_{cp} = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$

• Clear CPV found over different regions of Dalitz plot (with 3 fb⁻¹ data)

Results: $K\pi$ resonances

• Resonant contributions:

Contribution	Fit Fraction(%)	$A_{CP}(\%)$
K*(892) ⁰	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$
ρ(1450) ^υ	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm \ 3.8 \pm \ 1.9$
ϕ (1020)	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$

• $K\pi$ non-resonance modelled by

$$\mathcal{A}_{ ext{source}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1}$$
 $s = m_{\pi^{\pm}K^{\mp}}^2$
 $\Lambda = 1 \, ext{GeV}/c^2$

Phys. Rev. D 92 (2015) 054010

Results: KK resonances

• Resonant contributions:

Contribution	Fit Fraction(%)	$A_{CP}(\%)$
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm$ 8.8
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$
ρ(1450) ^υ	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$
$f_2(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm \ 3.8 \pm \ 1.9$
ϕ (1020)	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$

• *KK* non-resonance modelled by rescattering model

$$\mathcal{A}_{ ext{rescattering}} = \left(1 + rac{s}{\Lambda^2}
ight)^{-1}\sqrt{1-
u^2}e^{2i\delta}$$

Phys. Rev. D 71 (2005) 074016

 CPV as larger as -66.4%, largest CPV found in a single decay

Dalitz plot analysis with $B \rightarrow \pi \pi \pi$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• Dalitz plot analysis with 20594 ± 1569 events (3 fb⁻¹ data)

• Resonant contributions:

 ρ - ω , $f_0(500)$, $f_0(980)$ region: S-P wave interference $f_2(1270)$ region: D-S, P wave interference High mass: KK- $\pi\pi$ rescattering

• Three different methods to describe S-wave: Isobar model, K-Matrix approach, quasi model independent approach

S-wave results

0.000

0.5

1.0

1.5

2.0

2.5

 $m(\pi^{+}\pi^{-})$ [GeV/ c^{2}]

3.0

Good agreement between the three approaches

Hadron 2019, Guilin, China

1.5

2.0

2.5

 $m(\pi^+\pi^-)$ [GeV/ c^2]

3.0

0.5

1.0

1.5

2.0

2.5

 $m(\pi^+\pi^-)$ [GeV/ c^2]

1.0

0.000

0.5

3.(

• Fit fractions:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$ ho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \ \pm 0.7 \ \pm 2.0 \ \pm 1.0$

- Dominant contributions from S-wave and $\rho(770)$
- CP asymmetries:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

• Large CPV from S-wave and $f_2(1270)$

New CPV pattern

• CPV around $\rho(770)$ pole well described by the three S-wave models

- Over 25σ significance for CPV due to
 - S-P interference, first observation
- Sign-flip due to phase change and helicity angle change
- First observation of large CPV in decays with tensor

CPV searches in b-baryon decays

First evidence of CPV in b-baryon decays

• CPV has not yet been found in baryon decays

Nature Physics 13 (2017) 391 JHEP 08 (2018) 039

• We saw first evidence of 3.3σ 2 years ago in $\Lambda_b \rightarrow p3\pi$ using triple products using

• Updates with other $\Lambda_b \rightarrow p3h$ decays, no CPV found

A_{CP} measurements in $\Lambda_b/\Xi_b \rightarrow 4h$

- A_{CP} measurements performed with 3 fb⁻¹ data, complementary to triple-product asymmetry measurements
- Six channels studied w.r.t. control channels $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ and $\Xi_b^0 \to \Xi_c^+ \pi^-$, three of which further divided into specific regions of phase space :
 - $$\begin{split} \Lambda_b^0 &\to p \pi^- \pi^+ \pi^- \\ \Lambda_b^0 &\to p K^- \pi^+ \pi^- \\ \Lambda_b^0 &\to p K^- K^+ \pi^- \\ \Lambda_b^0 &\to p K^- K^+ K^- \end{split} \qquad \Xi_b^0 \to p K^- \pi^+ K^- \end{split}$$
- Results consistent with no CPV

arXiv: 1903.06792

Conclusion

- Many interesting CPV measurements have been performed by LHCb
- Will put useful information in determining CKM angles, in understanding underlying QCD effects and in constraining new physics
- Stay tuned for more results with LHCb Run 2 data

Thank you for your attention