J. Nieves, R. Pavao and L. Tolos, Eur. Phys. J. C 78, 114 (2018) J. Nieves, R. Pavao and L. Tolos, in preparation

# Heavy (charm) excited baryons with heavyquark spin symmetry

# Laura Tolós Rafael Pavao Juan M. Nieves



Institute of Space Sciences



# **Experimental scenario and theoretical predictions** $\Omega_c$ :

- five  $\Omega_c$  with masses between 3 and 3.1 GeV are detected by LHCb analyzing the  $\Xi^+_c K^-$  spectrum in pp collisions Aaij et al '17

- four of them are seen by Belle in e<sup>-</sup> e<sup>+</sup> collisions Yelton et al '18





#### four $\Xi_c$ states below 3 GeV

PDG

| Baryon                          | $J^P$     | M (MeV)                                       | $\Gamma (MeV)$                          | Decay channels                                                                |  |
|---------------------------------|-----------|-----------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------|--|
| $(\Xi_c(2790)^+/\Xi_c(2790)^0)$ | $1/2^{-}$ | $2792.4 \pm 0.5~/~2794.1 \pm 0.5$             | $8.9 \pm 1 / 10 \pm 1.1$                | $\Xi_c'\pi$                                                                   |  |
| $\Xi_c(2815)^+/\Xi_c(2815)^0$   | $3/2^{-}$ | $2816.73 \pm 0.21 \ / \ 2820.26 \pm 0.27$     | $2.43 \pm 0.26 \ / \ 2.54 \pm 0.25$     | $\Xi_c^\prime \pi,  \Xi_c^* \pi$                                              |  |
| $\Xi_c(2930)^+/\Xi_c(2930)^0$   | ?         | $2942 \pm 5 \ / \ 2929.7^{+2.8}_{-5}$         | $15 \pm 9 \ / \ 26 \pm 8$               | $\Lambda_c^+ K^-,  \Lambda_c^+ K_S^0$                                         |  |
| $\Xi_c(2970)^+/\Xi_c(2970)^0$   | ?         | $2969.4 \pm 0.8 \; / \; 2967.8^{+0.9}_{-0.7}$ | $20.9^{+2.4}_{-3.5} / 28.1^{+3.4}_{-4}$ | $\Lambda_c^+ \bar{K}\pi, \Sigma_c \bar{K}, \Xi_c 2\pi, \Xi_c'\pi, \Xi_c^*\pi$ |  |

 $\frac{\Xi_c(2930)}{E_c(2930)} recently discovered in$  $its decay to <math>\frac{K^-\Lambda_c^+}{\Lambda_c^-} in$  $B- -> K^-\Lambda_c^+\Lambda_c^- by Belle$ 



Earlier predictions were reported within different approaches, but this discovery has triggered a large activity revisiting conventional quark models, QCD sum-rule schemes, quark-soliton models, lattice QCD and molecular models. Some recent examples of molecular models are:

# $\Omega_{c}$

Montana, Feijoo and Ramos '18 two states with J=1/2<sup>-</sup> identified with  $\Omega_c(3050)$  and  $\Omega_c(3090)$ 

Debastiani, Dias, Liang and Oset '18

two states with J=1/2<sup>-</sup> identified with  $\Omega_c(3050)$  and  $\Omega_c(3090)$ , and one state J=3/2<sup>-</sup> identified with  $\Omega_c(3119)$ 

Wang, Liu, Kang and Guo '18 identification of  $1/2^{-} \Omega_{c}(3118)$  as superposition of two DE states

Chen, Liu, Hosaka '18

prediction of  $3/2^{-} \Omega_{c}(3140)$  loosely bound state with large  $\Xi_{c}^{*}K$  component

\_\_\_\_\_

Yu, Pavao, Debastiani and Oset '18

five  $\Xi_c$  states with masses around 3 GeV, that can be identified with the experimental  $\Xi_c(2790), \Xi_c(2930), \Xi_c(2970),$  $\Xi_c(3055)$  and  $\Xi_c(3080)$ 

# **Our molecular model**

unitarized coupled-channel model with a SU(6)<sub>Isf</sub> x HQSS - extended WT meson-baryon interaction



#### Romanets, LT, Garcia-Recio, Nieves, Salcedo, Timmermans '12

## $\Omega_{c}$ : C=1, S=-2, I=0

| $M_R$  | $\Gamma_R$ | Couplings to main channels                                                                                                                                                                         | J   |
|--------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2810.9 | 0.0        | $g_{\Xi D} = 3.3, g_{\Xi D^*} = 1.7, g_{\Xi_c \bar{K}^*} = 0.9, g_{\Xi^* D^*} = 4.8,$                                                                                                              | 1/2 |
| 2814.3 | 0.0        | $g_{\Omega_c \eta'} = 0.9, g_{\Omega D_s^*} = 4.2$<br>$g_{\Xi D^*} = 3.7, g_{\Xi^* D} = 3.1, g_{\Xi^* D^*} = 3.8, g_{\Omega D_s} = 2.7,$                                                           | 3/2 |
| 2884.5 | 0.0        | $g_{\Omega_c^*\eta'} = 0.9, \ g_{\Omega D_s^*} = 3.4$ $g_{\Xi_c \bar{K}} = 2.1, \ g_{\Xi D^*} = 1.7, \ g_{\Xi_c' \bar{K}^*} = 1.5, \ g_{\Xi_c^* \bar{K}^*} = 1.8,$                                 | 1/2 |
| 2941.6 | 0.0        | $g_{\Omega_c\phi} = 0.9, g_{\Omega_c^*\phi} = 1.1$<br>$g_{\Xi_c\bar{K}} = 1.9, g_{\Xi D} = 1.5, g_{\Omega_c\eta} = 1.7, g_{\Xi_c\bar{K}^*} = 1.4,$                                                 | 1/2 |
| 2980.0 | 0.0        | $g_{\Xi_c^{\prime}\bar{K}^{*}} = 1.1, g_{\Omega_c\phi} = 1.0, g_{\Omega D_s^{*}} = 0.9$ $g_{\Xi_c^{*}\bar{K}} = 1.9, g_{\Omega_c^{*}\eta} = 1.6, g_{\Xi D^{*}} = 1.4, g_{\Xi_c\bar{K}^{*}} = 1.6,$ | 3/2 |
|        |            | $g_{\Xi_c^*\bar{K}^*} = 1.3, g_{\Omega_c^*\phi} = 1.2$                                                                                                                                             |     |

## Ξ<sub>c</sub> : C=1, S=-1, I=1/2

| $M_R$  | $\Gamma_R$ | Couplings to main channels                                                                                                        | Status PDG           | J    |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| 2702.8 | 177.8      | $g_{\Xi_c\pi} = 2.4, g_{\Lambda D} = 1.2, g_{\Sigma D} = 1.1,$                                                                    |                      | 1/2  |
|        |            | $g_{\Lambda D^*} = 2.1, g_{\Sigma D^*} = 1.7, g_{\Xi D^*_*} = 1.1$                                                                |                      |      |
| 2699.4 | 12.6       | $g_{\Xi_c\pi} = 0.8, g_{\Lambda D} = 1.2, g_{\Sigma D} = 3.4,$                                                                    |                      | 1/2  |
|        |            | $g_{\Lambda D^*} = 2.2, \ g_{\Sigma D^*} = 5.4, \ g_{\Xi D_s} = 1.9,$                                                             |                      |      |
|        |            | $g_{\Xi_c \eta'} = 1.0, \ g_{\Xi D_s^*} = 3.3$                                                                                    |                      |      |
| 2733.0 | 2.2        | $g_{\Xi_c'\pi} = 0.5, g_{\Lambda D} = 1.9, g_{\Sigma D} = 1.8,$                                                                   |                      | 1/2  |
|        |            | $g_{\Lambda D^*} = 0.9, \ g_{\Sigma D^*} = 1.2, \ g_{\Xi D_s} = 1.2,$                                                             |                      |      |
|        |            | $g_{\Sigma^*D^*} = 5.8, g_{\Xi'_c\eta'} = 0.9, g_{\Xi^*D^*_s} = 3.3$                                                              |                      |      |
| 2734.3 | 0.0        | $g_{\Lambda D^*} = 2.2, \ g_{\Sigma D^*} = 2.1, \ g_{\Sigma^* D} = 3.6,$                                                          |                      | 3/2  |
|        |            | $g_{\Sigma^*D^*} = 4.6, \ g_{\Xi D_s^*} = 1.3, \ g_{\Xi^*D_s} = 2.1,$                                                             |                      |      |
| 0775 4 | 0.0        | $g_{\Xi^*D_s^*} = 2.6$                                                                                                            |                      | 1 /0 |
| 2115.4 | 0.6        | $g_{\Xi_c\pi} = 0.1, g_{\Xi'_c\pi} = 0.1, g_{\Lambda_c\bar{K}} = 1.4,$                                                            |                      | 1/2  |
|        |            | $g_{\Xi_c\eta} = 0.9, g_{\Lambda D^*} = 1.0, g_{\Sigma D^*} = 1.4,$                                                               |                      |      |
| 2772.0 | 027        | $g_{\Sigma_c \bar{K}^*} = 1.0, g_{\Sigma_c^* \bar{K}^*} = 1.3$                                                                    |                      | 1/2  |
| 2112.9 | 85.7       | $g_{\Xi_c\pi} = 0.1, g_{\Xi'_c\pi} = 2.3, g_{\Sigma_c\bar{K}} = 1.2,$                                                             |                      | 1/2  |
|        |            | $g_{\Lambda D} = 2.1, g_{\Lambda D^*} = 1.5, g_{\Omega_c K} = 0.9,$                                                               |                      |      |
|        |            | $g_{\Sigma D^*} = 0.9, g_{\Xi_c \rho} = 1.0, g_{\Sigma_c \bar{K}^*} = 0.9,$                                                       |                      |      |
| 28197  | 324        | $g_{\Xi_c^{\prime}\rho} = 1.0, g_{\Sigma^*D^*} = 1.4, g_{\Xi^*D_s^*} = 1.1$                                                       |                      | 3/2  |
| 2019.7 | 52.4       | $g_{\Xi_c\pi} = 1.9, g_{\Sigma_cK} = 2.3, g_{\Lambda D^*} = 2.0,$                                                                 |                      | 5/2  |
|        |            | $g_{\Lambda_c K^*} = 1.0, g_{\Xi_c \eta} = 1.1, g_{\Sigma D} = 1.2,$<br>$g_{\Xi_c} = 1.1, g_{\Sigma} = 1.0, g_{\Xi_c \eta} = 2.0$ |                      |      |
| 2804.8 | 20.7       | $g_{\Xi_c\rho} = 1.1, g_{\Sigma_cK} = 2.4, g_{AD} = 1.5$                                                                          | <b>Ξ</b> _(2790) *** | 1/2  |
| 200    | 20.7       | $g_{\Sigma D} = 1.2, g_{\Xi' D} = 1.3, g_{\Lambda} \bar{p}_{\star} = 1.2,$                                                        | $\square_c(2i)(0)$   | -/-2 |
|        |            | $g_{\Sigma D^*} = 0.9, g_{\Sigma \bar{\nu}^*} = 1.8, g_{\Sigma^* D^*} = 1.1,$                                                     |                      |      |
|        |            | $g_{\Sigma^*\bar{E}^*} = 1.0, g_{\Xi^*\bar{D}^*} = 1.2$                                                                           |                      |      |
| 2845.2 | 44.0       | $g_{\pi^*\pi} = 1.9, g_{\Sigma^*\bar{K}} = 2.1, g_{\Lambda D^*} = 2.6,$                                                           | $\Xi_{c}(2815) ***$  | 3/2  |
|        |            | $g_{\Lambda,\bar{K}^*} = 1.4, g_{\Xi^*,n} = 1.2, g_{\Sigma D^*} = 1.2,$                                                           |                      |      |
|        |            | $g_{\Xi_c\rho} = 0.9, g_{\Sigma_c\bar{K}^*} = 0.9, g_{\Sigma_c^*\bar{K}^*} = 1.7,$                                                |                      |      |
|        |            | $g_{\Xi^*D_s} = 0.9, \ g_{\Xi^*D_s^*} = 1.1$                                                                                      |                      |      |

#### Romanets, LT, Garcia-Recio, Nieves, Salcedo, Timmermans '12

# Our molecular model

unitarized coupled-channel model with a SU(6)<sub>lsf</sub> x HQSS - extended WT meson-baryon interaction



## Ω<sub>c</sub> : C=1, S=-2, I=0

| $M_{\rm p}$ | $\Gamma_R$ | Couplings to main channels                        | J   |
|-------------|------------|---------------------------------------------------|-----|
| 2810.9      | 0.0        | $a_{} = 3.3  a_{} = 1.7  a_{} = 0.0  a_{} = 4.8,$ | 1/2 |
| 2814.3      | 0.0        | too low in mass 2.7,                              | 3/2 |
| 2884.5      | 0.0        | to be identified *1.8,                            | 1/2 |
| 2941.6      | 0.0        |                                                   | 1/2 |
| 2980.0      | 0.0        | experimentally 1.6,                               | 3/2 |
|             |            |                                                   |     |

# Ξ<sub>c</sub>: C=1, S=-1, I=1/2

| M h    | $\Gamma_R$  | Couplings to main channels                                                                                                                                                                                                                                                                                                                                                                             | Status PDG                | J   |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|
| 2702.8 | 177.8       | $g_{\Xi_c\pi} = 2.4, g_{\Lambda D} = 1.2, g_{\Sigma D} = 1.1,$                                                                                                                                                                                                                                                                                                                                         |                           | 1/2 |
| 2699.4 | 12.6        | $g_{\Lambda D^*} = 2.1, g_{\Sigma D^*} = 1.7, g_{\Xi D_s^*} = 1.1$<br>$g_{\Xi_c \pi} = 0.8, g_{\Lambda D} = 1.2, g_{\Sigma D} = 3.4,$<br>$g_{\Lambda D^*} = 2.2, g_{\Sigma D^*} = 5.4, g_{\Xi D_s} = 1.9,$                                                                                                                                                                                             |                           | 1/2 |
| 2733.0 | 2.2         | $g_{\Xi_c \eta'} = 1.0, \ g_{\Xi D_s^*} = 3.3$                                                                                                                                                                                                                                                                                                                                                         |                           | 1/2 |
| 2734.3 | <b>0</b> .0 | too low in mass                                                                                                                                                                                                                                                                                                                                                                                        | <b>,</b>                  | 3/2 |
| 2775.4 | 06          | only two might                                                                                                                                                                                                                                                                                                                                                                                         | be                        | 1/2 |
| 2772.9 | 8: .7       | identifed                                                                                                                                                                                                                                                                                                                                                                                              |                           | 1/2 |
| 2819.7 | 32.4        | <b>experimentally</b><br>$g_{\Delta, \mathcal{K}^*} = 1.0, g_{\Xi^*, \eta} = 1.1, g_{\Sigma D^*} = 1.2,$                                                                                                                                                                                                                                                                                               | $\frown$                  | 3/2 |
| 2804.8 | 20.7        | $g_{\Xi_c\rho} = 1.1, g_{\Sigma_c\bar{k}^*} = 1.0, g_{\Sigma_c\bar{k}^*} = 2.0$<br>$g_{\Xi_c'\pi} = 1.1, g_{\Sigma_c\bar{k}} = 2.4, g_{\Lambda D} = 1.5,$<br>$g_{\Sigma D} = 1.2, g_{\Xi_c'\eta} = 1.3, g_{\Lambda_c\bar{k}^*} = 1.2,$<br>$g_{\Sigma D^*} = 0.9, g_{\Sigma_c\bar{k}^*} = 1.8, g_{\Sigma_c\bar{k}^*} = 1.1.$                                                                            | 臣 <sub>c</sub> (2790) *** | 1/2 |
| 2845.2 | 44.0        | $g_{\Sigma_{c}^{*}\bar{K}^{*}} = 1.0, g_{\Xi^{*}D_{c}^{*}} = 1.2$<br>$g_{\Xi_{c}^{*}\pi} = 1.9, g_{\Sigma_{c}^{*}\bar{K}} = 2.1, g_{\Lambda D^{*}} = 2.6,$<br>$g_{\Lambda_{c}\bar{K}^{*}} = 1.4, g_{\Xi_{c}^{*}\eta} = 1.2, g_{\Sigma D^{*}} = 1.2,$<br>$g_{\Xi_{c}\rho} = 0.9, g_{\Sigma_{c}\bar{K}^{*}} = 0.9, g_{\Sigma_{c}^{*}\bar{K}^{*}} = 1.7,$<br>$g_{\Xi^{*}D} = 0.9, g_{\Xi^{*}D^{*}} = 1.1$ | 臣 <sub>c</sub> (2815) *** | 3/2 |

**Regularization schemes (RS) of the loop function** 

$$G_{i}(s) = i2M_{i} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - m_{i}^{2} + i\epsilon} \frac{1}{(P - q)^{2} - M_{i}^{2} + i\epsilon}$$
$$G_{i}(s) = \overline{G}_{i}(s) + G_{i}(s_{i+}) \text{ with } s_{i+} = (m_{i} + M_{i})^{2}$$

One-subtraction regularization (one subtraction at certain scale)  $G_i(\sqrt{s} = \mu) = 0$  $G_i^{\mu}(s) = \overline{G}_i(s) - \overline{G}_i(\mu^2)$  Common cutoff regularization (use of a common UV cutoff)

$$G_i^{\Lambda}(s) = \overline{G}_i(s) + G_i^{\Lambda}(s_{i+})$$

Note that using channel-dependent cutoffs, the one-subtraction regularization scheme is recovered by choosing  $\Lambda_i$  in each cannel such that

$$G_i^{\Lambda_i}(s_{i+}) = -\overline{G}_i(\mu^2)$$

# We need to explore the impact of different RS in a control manner: **employ common UV cutoff within reasonable limits**

first we determine how masses (and widths) of the states change as we adiabatically vary the subtraction constants

$$G_i(s) = \overline{G}_i(s) - (1 - x)\overline{G}_i(\mu^2) + xG_i^{\Lambda}(s_{i+1})$$

x changes from 0 to 1

- two J=1/2<sup>-</sup> and one J=3/2<sup>-</sup> can be identified with three experimental states due to closeness in energy and also because of the important contribution of the experimental channels E'<sub>c</sub>K, E<sub>c</sub>K to their dynamical generation
- need to assess the cutoff dependence of our results

| $\Omega_{c}$ : | C=1, S      | $\Lambda = 1090 \text{ MeV}$ |     |                |                  |
|----------------|-------------|------------------------------|-----|----------------|------------------|
| Name           | $M_R$ (MeV) | $\Gamma_R$ (MeV)             | J   | $M_R^{exp}$    | $\Gamma_R^{exp}$ |
| a              | 2963.95     | 0.0                          | 1/2 | -              | _                |
| c              | 2994.26     | 1.85                         | 1/2 | 3000.4         | 4.5              |
| b              | 3048.7      | 0.0                          | 3/2 | 3050.2         | 0.8              |
| d              | 3116.81     | 3.72                         | 1/2 | 3119.1/ 3090.2 | 1.1/ 8.7         |
| e              | 3155.37     | 0.17                         | 3/2 | _              | _                |

Nieves, Pavao and LT '18

Ω<sub>c</sub> : C=1, S=-2, I=0



- for  $\Lambda$ <1000 MeV or  $\Lambda$ >1300 MeV no identification is possible

- a maximum number of three states can be identified

Ξ<sub>c</sub>: C=1, S=-1, I=1/2



Ξ<sub>c</sub>: C=1, S=-1, I=1/2

#### $\Lambda = 1150 \text{ MeV}$

| Irreps                                                        | State           | $M_R$ (MeV) | $\Gamma_{\rm R}$ (MeV) | J   | Couplings                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------|-----------------|-------------|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(168, 21_{2,1}, 3_2^{\star})$                                | <i>c</i> 1      | 2773.59     | 10.52                  | 1/2 | $g_{\Xi_c\pi} = 0.53, g_{\Xi'_c\pi} = 0.32, g_{\Lambda_c\bar{K}} = 1.3, g_{\Sigma_c\bar{K}} = 0.92, g_{\Lambda D} = 1.6, \\ g_{\Sigma D} = 1.5, g_{\Lambda D^*} = 2.9, g_{\Sigma D^*} = 1.0, g_{\Xi'_c\rho} = 1., g_{\Lambda_c\bar{K}^*} = 0.23$                                                                                                                                     |
| $(168,\mathbf{15_{2,1}},\mathbf{6_2})$                        | $c_2$           | 2627.5      | 38.84                  | 1/2 | $g_{\Xi_c\pi} = 1.8, \ g_{\Xi'_c\pi} = 0.04, \ g_{\Lambda_c\bar{K}} = 1.2, \ g_{\Sigma_c\bar{K}} = 0.09, \ g_{\Lambda_c\bar{K}^*} = 0.04, g_{\Sigma D} = 1.2, \ g_{\Lambda D^*} = 1., \ g_{\Sigma D^*} = 1.9$                                                                                                                                                                        |
| $({\bf 168}, {\bf 21_{2,1}}, {\bf 6_2})$                      | $c_3^{\bullet}$ | 2791.24     | 17.31                  | 1/2 | $g_{\Xi_c\pi} = 0.37, g_{\Xi'_c\pi} = 0.8, g_{\Lambda_c\bar{K}} = 0.26, g_{\Sigma_c\bar{K}} = 1.6, g_{\Sigma D} = 2.6, g_{\Lambda D^*} = 2.7, g_{\Xi'_c\eta} = 1., g_{\Lambda_c\bar{K}^*} = 1.1, g_{\Sigma D^*} = 2.5, g_{\Xi D^*_s} = 1.8$                                                                                                                                          |
| $(168,21_{2,1},6_{4})$                                        | <b>C</b> 4      | 2850.89     | 6.76                   | 3/2 | $g_{\Xi_{c}^{*}\pi} = 0.57, \ g_{\Sigma_{c}^{*}\bar{K}} = 2.2, \ g_{\Lambda_{c}\bar{K}^{*}} = 1.5, \ g_{\Xi_{c}^{*}\eta} = 1.1, \ g_{\Sigma^{*}D} = 1.1, \ g_{\Sigma^{*}D^{*}} = 1.5, \ g_{\Sigma_{c}^{*}barK^{*}} = 1.8$                                                                                                                                                            |
| $({\bf 168}, {\bf 15_{2,1}}, {\bf 3_2^*})$                    | <i>C</i> 5      | 2715.23     | 12.28                  | 1/2 | $g_{\Xi_c\pi} = 0.21, \ g_{\Xi'_c\pi} = 1.8, \ g_{\Lambda_c\bar{K}} = 0.49, \ g_{\Sigma_c\bar{K}} = 1.2, \ g_{\Lambda D} = 3.1, \\ g_{\Lambda_c\bar{K}^*} = 0.07, \ g_{\Sigma D} = 1.5$                                                                                                                                                                                              |
| $(120, 21_{2,1}, 3_2^*)$                                      | $c_6^*$         | 2806.89     | 0                      | 1/2 | - <b>R.S.</b> not connected $-$                                                                                                                                                                                                                                                                                                                                                      |
| $(120, 21_{2,1}, 6_2)$                                        | C7              | 2922.5      | 2.48                   | 1/2 | $\begin{array}{l} g_{\Xi_c\pi} = 0.15, \ g_{\Xi_c'\pi} = 0.03, \ g_{\Lambda_cK} = 0.16, \ g_{\Sigma_cK} = 0.06, \ g_{\Lambda D} = 1.8, \\ g_{\Sigma D} = 1.4, \ g_{\Lambda D^*} = 1.7, \ g_{\Lambda_cK^*} = 1.2, \ g_{\Sigma D^*} = 1.5, \ g_{\Xi_c\rho} = 1.2, \\ g_{\Sigma^* D^*} = 3.7, \ g_{\Sigma_cK^*} = 1.1, \ g_{\Xi_c^*\rho}^* = 1., \ g_{\Xi^* D_s^*}^* = 1.9 \end{array}$ |
| $(168, 15_{2,1}, 3_4^*)$                                      | <i>C</i> 8      | 2792.06     | 22.79                  | 3/2 | $g_{\Xi_c^{\star}\pi} = 1.7, \ g_{\Sigma_c^{\star}\bar{K}} = 1., \ g_{\Lambda D^{\star}} = 2.4, \ g_{\Sigma D^{\star}} = 1.2, \ g_{\Lambda_c\bar{K}^{\star}} = 0.23$                                                                                                                                                                                                                 |
| $(\boldsymbol{120}, \boldsymbol{21_{2,1}}, \boldsymbol{6_4})$ | C9              | 2942.05     | 1.46                   | 3/2 | $g_{\Xi_{c}^{\star}\pi} = 0.2, \ g_{\Sigma_{c}^{\star}\bar{K}} = 0.19, \ g_{\Lambda_{c}\bar{K}^{\star}} = 0.4, \ g_{\Lambda D^{\star}} = 2.7, \ g_{\Sigma D^{\star}} = 2.2, \\ g_{\Sigma^{\star}D} = 2.8, \ g_{\Sigma^{\star}D^{\star}} = 3.4, \ g_{\Xi^{\star}D_{s}} = 1.4, \ g_{\Xi^{\star}D_{s}^{\star}} = 1.8$                                                                   |

Nieves, Pavao and LT (in preparation)

#### Experimental identification based on energy position and couplings

$$\begin{split} &\Xi_{\rm c}(2790): {\rm c}_1, {\rm c}_3 \, {\rm or} \, {\rm c}_6 \, ({\rm coupling to} \ \Xi_{\rm c} \pi), \, {\rm different assignment using DR} \\ &\Xi_{\rm c}(2930): {\rm c}_7 \, ({\rm assuming 1/2- and given coupling to} \ \Lambda_{\rm c} \overline{{\rm K}} \, ) \\ &\Xi_{\rm c}(2815): {\rm c}_4 \, {\rm or} \, {\rm c}_8 \, ({\rm coupling to} \ \Xi_{\rm c} \pi), \, {\rm different assignment using DR} \\ &\Xi_{\rm c}(2970): {\rm c}_9 \, ({\rm assuming 3/2-}) \, {\rm and given coupling to} \ \Lambda_{\rm c} \overline{{\rm K}}^* \to \Lambda_{\rm c} \overline{{\rm K}} \, \pi \\ &{\rm and} \ \Xi_{\rm c}^* \pi \to \Xi_{\rm c} \pi \, \pi) \end{split}$$

#### Experimental identification based on SU(3)<sub>2J+1</sub> classification of $\Lambda_c$ and $\Xi_c$

### Ξ<sub>c</sub>(2815)

- Considering  $\Lambda_c(2625)^*$  and  $c_8 SU(3)$  siblings with 1- Idof  $(\Sigma_c^* \pi / \Xi_c^* \pi)$ 

- Taking  $\Xi_c(2815)$  as  $c_8$  state with mixing of  $c_4$  to obtain  $\Gamma$ =2-3 MeV,

then  $\Xi_c(2815)$  and  $\Lambda_c(2625)^*$  SU(3) siblings (same  $3^*_4$  multiplet)

#### Ξ<sub>c</sub>(2790)

- Considering  $\Lambda_c(2625)^*$  HQSS partner of  $\Lambda_c(2595)$  (wide), then partner of  $c_5$ 

- Assuming  $\Xi_c(2815)$  is the HQSS partner of  $\Xi_c(2790)$ , then  $\Xi_c(2790)$  is **c**<sub>5</sub> state with mixing with c<sub>3</sub> and c<sub>6</sub> to reduce the decay width (3<sub>2</sub> multiplet)

 $\Xi_c(2930)$  and  $\Xi_c(2970)$ Taking  $\Xi_c(2930)$  and  $\Xi_c(2970)$  our  $c_7$  and  $c_9$  states (assuming1/2- and 3/2-), then  $\Xi_c(2930)$  and  $\Xi_c(2970)$  HQSS partners ( $6_2$  and  $6_4$  multiplets)

 $\Xi_{\rm c}(2790)$  1/2- and  $\Xi_{\rm c}(2815)$  3/2- HQSS partners  $\Xi_{\rm c}(2930)$  (assuming 1/2-) and  $\Xi_{\rm c}(2970)$  (assuming 3/2-) HQSS partners

 $\Xi_c$ (2930) and  $\Omega_c$ (3090) SU(3) siblings (same 6<sub>2</sub> multiplet) with  $\Sigma_c$ (2800) (?)  $\Xi_c$ (2970) and  $\Omega_c$ (3119) (!!) SU(3) siblings (same 6<sub>4</sub> multiplet) with  $\Sigma_c$ (2800)(?)

\* assuming  $\Lambda_c(2625)$  is a molecular state

# **Comparison with recent molecular models**

## Ω<sub>c</sub> : C=1, S=-2, I=0

Montana, Feijoo and Ramos '18

- t-channel vector meson exchange between 1/2<sup>+</sup> baryons and 0<sup>-</sup>,1<sup>-</sup> mesons
- two states with J=1/2<sup>-</sup> identified with  $\Omega_c(3050)$  and  $\Omega_c(3090)$

Debastiani, Dias, Liang and Oset '18

- local hidden gauge model with 1/2+,3/2+ baryons and 0-,1- vector mesons

- two states with J=1/2<sup>-</sup> identified with  $\Omega_c(3050)$  and  $\Omega_c(3090)$ , and one state J=3/2<sup>-</sup> identified with  $\Omega_c(3119)$ 

our model identifies J=1/2<sup>-</sup>  $\Omega_c(3000)$ ,  $\Omega_c(3119/3090)$  and J=3/2<sup>-</sup>  $\Omega_c(3050)$  for  $\Lambda$ =1090 MeV due to a different regularization scheme and different interaction matrices (in particular for D, D\* and light vector mesons)

Wang, Liu, Kang and Guo '18 identification of  $1/2^{-} \Omega_{c}(3118)$  as superposition of two  $\Xi$  D states

Chen, Liu, Hosaka '18

prediction of 3/2<sup>-</sup>  $\Omega_c(3140)$  loosely bound state with large  $\Xi_c^*K$  component

no identification is possible in our model:  $\Omega_c(3118)$  comes from less attractive representation and  $\Omega_c(3140)$  is not seen as we incorporate  $\Xi^{(*)} D^{(*)}$ 

# **Comparison with recent molecular models**

### Ξ<sub>c</sub>: C=1, S=-1, I=1/2

Yu, Pavao, Debastiani and Oset '18

- local hidden gauge model with 1/2<sup>+</sup>,3/2<sup>+</sup> baryons and 0<sup>-</sup>,1<sup>-</sup> vector mesons
- five  $\Xi_c$  states with masses around 3 GeV, that can be identified with the experimental  $\Xi_c(2790)$ ,  $\Xi_c(2930)$ ,  $\Xi_c(2970)$ ,  $\Xi_c(3055)$  and  $\Xi_c(3080)$ - whereas  $\Xi_c(2790)$  is obtained with 1/2-,  $\Xi_c(2930)$ ,  $\Xi_c(2970)$ ,  $\Xi_c(3055)$  and  $\Xi_c(3080)$  can be either 1/2- or 3/2- states

our model identifies ( $\Xi_c(2790) 1/2$ -,  $\Xi_c(2815) 3/2$ -) and ( $\Xi_c(2930) 1/2$ -,  $\Xi_c(2970) 3/2$ -) as HQSS partners

the differences are due to a different regularization scheme and different interaction matrices (in particular for D, D\* and light vector mesons)







We study charm excited baryons ( $\Omega_c$  and  $\Xi_c$ ), where several excited states with masses around 3 GeV have been observed.

We use a unitarized coupled-channel approach with a SU(6)<sub>lsf</sub> x HQSS - extended WT meson-baryon interaction and analyze the dependence on the regularization scheme, and in particular on the common UV cutoff

We find that a maximum number of three  $\Omega_c$  states can be identified experimentally, whereas the experimental ( $\Xi_c(2790)$  1/2-,  $\Xi_c(2815)$  3/2-) and ( $\Xi_c(2930)$  1/2-,  $\Xi_c(2970)$  3/2-) are found to be HQSS partners

