Hadronic and nuclear physics for BSM searches

Emanuele Mereghetti

August 21st, 2019

18th International Conference on Hadron Spectroscopy and Structure, Guilin

◆□> ◆□> ◆目> ◆目> ●目

ATLAS collaboration, '14.

ATLAS & CMS, '16.

- the Standard Model works just fine
- last missing piece discovered @ LHC

... and looks SM-like

Why No Antimatter?

neutrino masses

baryogenesis

• dark matter

• EDM experiments

• DM direct detection

- large variety of BSM scenarios
- focus on heavy BSM physics $\Lambda \gg v = 246 \text{ GeV}$

model-indep. EFT description

- large variety of BSM scenarios
- focus on heavy BSM physics $\Lambda \gg v = 246 \text{ GeV}$
- low-energy experiments competitive & complementary to LHC

 \Rightarrow M. Zamkovsky, W. Qian and M. Saur's talks, Sat

1. observables w. SM background

precise SM background to claim discovery

1. observables w. SM background

precise SM background to claim discovery

2. observables w/o (w. negligible) SM background extract microscopic symmetry violation params ($\bar{\theta}, m_{\beta\beta}, \ldots$) compare w. high-energy exp. & disentangle BSM scenario

- important if baryogenesis comes from top sector
- · EDM bounds much stronger than collider

- important if baryogenesis comes from top sector
- EDM bounds much stronger than collider
- ... but hadronic & nuclears uncertainties weaken bounds

$$\langle n|J^{\mu}_{\rm em} GG\tilde{G}|n\rangle = ?$$
 $\langle ^{225}{
m Ra}|J^{\mu}_{\rm em} GG\tilde{G}|^{225}{
m Ra}\rangle = ?$

Electric dipole moments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Electric dipole moments

A permanent Electric Dipole Moment (EDM)

- signal of *T* and *P* violation (*CP*)
- insensitive to CP violation in the SM
- BSM CP violation needed for baryogenesis

neutron

current bound $|d_n| < 3.0 \cdot 10^{-13} e \text{ fm}$ J. M. Pendlebury *et al.*, '15

SM $d_n \sim 10^{-19} e \text{ fm}$ M. Pospelov and A. Ritz, '05

• large window & strong motivations for new physics!

EDM experiments worldwide

• goals for the next EDM generation

イロト イポト イヨト イヨト 二日

Low-energy EFT for flavor-diagonal T violation

After integrating out heavy SM d.o.f.

• one dim-4 operator: QCD $\bar{\theta}$ term

$$\mathcal{L}_{\mathcal{T}4} = m_* \bar{\theta} \bar{q} i \gamma_5 q$$

• 9 (+ 10 w. strangeness) hadronic operators @ $O(v^2/\Lambda^2)$:

how many observables to pinpoint $\bar{\theta}$ term? how to disentangle BSM mechanisms?

• nucleon and nuclear EDMs as a function of quark/gluon operators?

Chiral EFT

• systematic expansion of π , π -N interactions NN potentials and currents in $\epsilon_{\chi} \equiv \{Q, m_{\pi}\}/\Lambda_{\chi}, \ \Lambda_{\chi} \sim 1 \text{ GeV}$

 \Rightarrow Lisheng Geng's talk, Tue

$$\mathcal{L}_{f} = -2\bar{N} \left(\bar{d}_{0} + \bar{d}_{1} \tau_{3} \right) S^{\mu} v^{\nu} N F_{\mu\nu} - \frac{\bar{g}_{0}}{F_{\pi}} \bar{N} \boldsymbol{\pi} \cdot \boldsymbol{\tau} N - \frac{\bar{g}_{1}}{F_{\pi}} \pi_{3} \bar{N} N + \dots$$

- operators in $\mathcal{L}_{\mathcal{T}}$ & scaling of couplings dictated by chiral symmetry
- $\overline{d}_0, \overline{d}_1$ neutron & proton EDM, one-body contribs. to A ≥ 2 nuclei
- \bar{g}_0, \bar{g}_1 pion loop to nucleon & proton EDMs, leading OPE / potential

relative size of the couplings depends on chiral/isospin properties of f source

$$\mathcal{L}_{\mathcal{T}} = -2\bar{N} \left(\bar{d}_0 + \bar{d}_1 \tau_3 \right) S^{\mu} v^{\nu} N F_{\mu\nu} - \frac{\bar{g}_0}{F_{\pi}} \bar{N} \boldsymbol{\pi} \cdot \boldsymbol{\tau} N - \frac{\bar{g}_1}{F_{\pi}} \pi_3 \bar{N} N + \dots$$

- operators in $\mathcal{L}_{\mathcal{T}}$ & scaling of couplings dictated by chiral symmetry
- $\overline{d}_0, \overline{d}_1$ neutron & proton EDM, one-body contribs. to A ≥ 2 nuclei
- \bar{g}_0, \bar{g}_1 pion loop to nucleon & proton EDMs, leading OPE / potential

relative size of the couplings depends on chiral/isospin properties of f source

- chiral breaking operators generate large \bar{g}_0
- chiral & isospin breaking large \bar{g}_1
- can we be more precise?

Nucleon EDM from qEDM

$$\mathcal{L}_{ ext{qEDM}} = m_q \tilde{c}_q \, \bar{q} \sigma_{\mu\nu} q \, \varepsilon^{lpha eta \mu
u} F_{\mu
u} \implies d_N \propto \langle N | \bar{q} \sigma^{\mu\nu} q | N
angle \equiv g_T$$

- single nucleon charges well determined by LQCD
- $\sim 5\%$ uncertainty on *u*, *d*
- first signal for *s*, $g_T^s = -0.0027 \pm 0.0016$

discrepancy with transversity?

 \Rightarrow Z. Kang and Z. Zhao's talks, Tue

S. Syritsyn, T. Izubuchi, H. Ohki, '19

$d_N \propto \langle N | G \tilde{G}(x) J^{\mu}_{ m em}(y) | N angle$

sustained effort from LQCD

S. Syritsyn et al @ RIKEN-BNL; A. Shindler et al @ MSU; T. Bhattacharya et al, LANL; ...

• no signal at physical pion mass, preliminary results @ heavier pions

expect results on experiment timescale

Neutron, $d_n(a, m_\pi)$ Fit Proton, $d_n(a, m_\pi)$ Fit 0.004 0.015 Neutron Proton 0.002 $d_n = -1.52(71) \times 10^{-3} \ \overline{\theta} \ e \ fm$ $d_n = 0.0011(10) \ \bar{\theta} \ e \ fm$ 0.000 Continuum 0.010 $d_p[efm]$ $d_{n}^{-0.002} = d_{n}^{-0.004}$ -0.008 0.000 -0.010Continuum -0.012L 100 200 300 400 500 600 700 100 200 300 400 500 600 700 $m_{\pi}[MeV]$ $m_{\pi}[MeV]$

Nucleon EDM from the $\bar{\theta}$ term

J. Dragos, T. Luu, A. Shindler, J. de Vries, A. Yousif, '19

$$d_N \propto \langle N | G \tilde{G}(x) J^{\mu}_{
m em}(y) | N
angle$$

sustained effort from LQCD

S. Syritsyn et al @ RIKEN-BNL; A. Shindler et al @ MSU; T. Bhattacharya et al, LANL; ...

• no signal at physical pion mass, preliminary results @ heavier pions

expect results on experiment timescale

Nucleon EDM from dim. 6 hadronic operators

qCEDM more promising

but still preliminary, e.g no renormalization

gCEDM, 4-quark operators ... work in progress

CPV pion nucleon couplings

thanks to A. Walker-Loud

- π -N couplings crucial for nuclear EDMs & Schiff moments
- χ -symmetry relates π -N couplings to spectral properties e.g. for $\bar{\theta}$: $\bar{q}i\gamma_5 q \Longrightarrow \bar{q}\tau_3 q$ $\frac{\bar{g}_0}{F_{\pi}}(\bar{\theta}) = \frac{(m_n - m_p)|_{\text{str}}}{F_{\pi}} \frac{1 - \varepsilon^2}{2\varepsilon} \bar{\theta} = (15.5 \pm 2.0 \pm 1.6) \cdot 10^{-3} \bar{\theta}$ LQCD N²LO χ PT

CPV pion-nucleon couplings. qCEDM

• can use similar relations to spectrum

$$\bar{g}_0 = (m_u \bar{c}_g^{(u)} + m_d \bar{c}_g^{(d)}) \left(\sigma_C^3 - r\sigma^3\right), \qquad r = \frac{\langle 0|g_s \bar{q} \sigma \cdot G \bar{q}|0\rangle}{2\langle 0|\bar{q}q|0\rangle}$$

$$\bar{g}_1 = (m_u \bar{c}_g^{(u)} - m_d \bar{c}_g^{(d)}) \left(\sigma_C^0 - r\sigma^0\right), \qquad \sigma_C^{0,3} = \langle N|g_s \bar{q} \sigma \cdot G\{1, \tau^3\}q|N\rangle/2$$

$$\sigma^{0,3} = \langle N|\bar{q}\{1, \tau^3\}q|N\rangle$$

 any other handles on generalized sigma terms? higher-twist chiral-odd distributions?

C. Y. Seng, '18

イロト イヨト イヨト イヨト

19/33

From nucleons to nuclei: light nuclei as "chiral filters"

$$d_A = lpha_n d_n + lpha_p d_p + a_0 e rac{ar{g}_0}{F_\pi^2} + a_1 e rac{ar{g}_1}{F_\pi^2}, \qquad lpha_{n,p} \sim a_{0,1} = \mathcal{O}(1)$$

• EDM of light nuclei enhanced w.r.t. d_n , d_p for χ -breaking sources

$$d_A = \mathcal{O}(\epsilon_\chi^{-2}) d_n$$

if $a_{0,1} = \mathcal{O}(1)$ & $\bar{g}_{0,1}$ follow NDA

different nuclei have different sensitivities to g
_{0,1}
 e.g. a₀ = 0 for d_d

Ab initio calculations of d_d

several calculations pheno & chiral T-conserving potentials

C. P. Liu and R. Timmermans, '05; J. de Vries et al, '11;

J. Bsaisou et al, '13, J. Bsaisou et al, '15;

N. Yamanaka and E. Hiyama, '15

• one-body & / OPE contribution not affected by different potentials

EDM of ³He and ³H

イロト イヨト イヨト イヨト

- additonal texture from ³H, ³He \implies sensitive to \bar{g}_0
- one-body not affected by different potentials
- OPE agrees well with ptb. pion counting

< 10% error on \bar{g}_1 ~ 30% error on \bar{g}_0

Disentangling *T* mechanisms

• $d_d \gg d_n + d_p$ isospin-breaking sources $d_d \sim d_n + d_p$ QCD $\bar{\theta}$ term $d_d = d_n + d_p$ qEDM

... but swamped by current theory uncertainties

O(20%) uncertainties sufficient to discriminate!

Disentangling *T* mechanisms

 $d_d = d_n + d_p$ qEDM

... but swamped by current theory uncertainties

O(20%) uncertainties sufficient to discriminate!

Neutrinoless double beta decay

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Neutrinoless double beta decay

• $0\nu\beta\beta$ violates lepton number L by two units

possible iff ν s have a Majorana mass

イロン スピン メヨン イヨン

- relation between m_{ν} and $0\nu\beta\beta$ depends on:
 - 1. assumptions on BSM physics
 - 2. nuclear matrix elements, e.g. $\langle {}^{76}\text{Ge}|V_{0\nu\beta\beta}|{}^{76}\text{Se} \rangle$

EFT approach to LNV

Light- ν exchange mechanism in chiral EFT

• LO $0\nu\beta\beta$ operator is two-body

$$V_{\nu} = \mathcal{A}\tau^{(1)+}\tau^{(2)+}\frac{1}{\mathbf{q}^{2}}\left\{\mathbf{1}^{(a)}\times\mathbf{1}^{(b)} - g_{A}^{2}\boldsymbol{\sigma}^{(a)}\cdot\boldsymbol{\sigma}^{(b)}\left(\frac{2}{3} + \frac{1}{3}\frac{m_{\pi}^{4}}{(\mathbf{q}^{2} + m_{\pi}^{2})^{2}}\right) + \dots\right\}$$
$$\mathcal{A} = 2G_{F}^{2}m_{\beta\beta}\,\bar{e}_{L}C\,\bar{e}_{L}^{T}$$

agree with all $0\nu\beta\beta$ literature

· Coulomb-like long-range component determined by nucleon axial and vector FF

Light- ν exchange mechanism. Higher orders

V. Cirigliano, W. Dekens, EM, A. Walker-Loud, '17

At N²LO $\mathcal{O}(\mathbf{q}^2/\Lambda_{\chi}^2)$, $\Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}$ 1. correction to the one-body currents (magnetic moment, radii, ...) $g_A(\mathbf{q}^2) = g_A \left(1 - r_A^2 \frac{\mathbf{q}^2}{6} + ...\right)$

- 2. two-body corrections to V and A currents
- 3. pion-neutrino loops & local counterterms

UV divergences signal short-range sensitivity at N²LO $g_{\nu}^{\pi\pi}$, $g_{\nu}^{\pi N}$ and g_{ν}^{NN} require new calculations

Light- ν exchange mechanism. Higher orders

V. Cirigliano, W. Dekens, EM, A. Walker-Loud, '17

At N²LO $\mathcal{O}(\mathbf{q}^2/\Lambda_{\chi}^2)$, $\Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}$ 1. correction to the one-body currents (magnetic moment, radii, ...) $g_A(\mathbf{q}^2) = g_A \left(1 - r_A^2 \frac{\mathbf{q}^2}{6} + \ldots \right)$

- 2. two-body corrections to V and A currents
- 3. pion-neutrino loops & local counterterms

UV divergences signal short **WARNING:** based on naive $g_{\nu}^{\pi\pi}, g_{\nu}^{\pi N}$ and g_{ν}^{NN} require ne dimensional analysis "Weinberg's counting"

Is Weinberg's counting consistent for $0\nu\beta\beta$

• Weinberg's counting fails in ${}^{1}S_{0}$ channel D. Kaplan, M. Savage, M. Wise, '96

イロン イボン イヨン イヨン

28/33

• study $nn \rightarrow ppe^-e^-$ with LO χ EFT strong potential

$$V_{\text{strong}}(r) = \tilde{C}\,\delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$

Is Weinberg's counting consistent for $0\nu\beta\beta$

• Weinberg's counting fails in ${}^{1}S_{0}$ channel

D. Kaplan, M. Savage, M. Wise, '96

• • • • • • • • • • • •

• study $nn \rightarrow ppe^-e^-$ with LO χ EFT strong potential

$$V_{\text{strong}}(r) = \tilde{C}\,\delta^{(3)}(\mathbf{r}) + \frac{g_A^2 m_\pi^2}{16\pi F_\pi^2} \frac{e^{-m_\pi r}}{4\pi r}$$

- 1. regulate \tilde{C} & fit to ${}^{1}S_{0}$ scattering length
- 2. then compute $\mathcal{A}_{\nu} = \int d^3 \mathbf{r} \psi_{\mathbf{p}'}^{-*}(\mathbf{r}) V_{\nu}(\mathbf{r}) \psi_{\mathbf{p}}^{+}(\mathbf{r})$

 \mathcal{A}_{ν} is log divergent!

 $\exists \rightarrow$

28/33

Light- ν exchange mechanism

V. Cirigliano, et al, '18, '19

• renormalization requires g_{ν}^{NN} to be promoted to LO

spectacular failure of Weinberg's counting g_{ν}^{NN} absent in standard $0\nu\beta\beta$ calculations!

- RGE of g_{ν}^{NN} is known, finite piece?
- exploit approx. symmetry relation to short-distance CIB in NN scattering

$$V_{\text{CIB},\text{S}} = -\frac{e^2}{4}(\mathcal{C}_1 + \mathcal{C}_2), \qquad g_{\nu}^{\text{NN}} = \mathcal{C}_1$$

Impact on $0\nu\beta\beta$ nuclear matrix elements

thanks to M. Piarulli and S. Pastore

(日) (日) (日) (日) (日)

- *ab initio* calculations of ${}^{6}\text{He} \rightarrow {}^{6}\text{Be}$ and ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}$
- large corrections to $\Delta I = 2$ transitions

AV18:
$$M_L = 0.653$$
, $M_S = 0.518$
 χ EFT: $M_L = 0.725$, $M_S = 0.533$

> 50% corrections

• ... but uncontrolled theory error from $C_1 = C_2$

30/33

Impact on $0\nu\beta\beta$ nuclear matrix elements

• *ab initio* calculations of ${}^{6}\text{He} \rightarrow {}^{6}\text{Be}$ and ${}^{12}\text{Be} \rightarrow {}^{12}\text{C}$

• large corrections to $\Delta I = 2$ transitions

AV18:
$$M_L = 0.653$$
, $M_S = 0.518$
 χEFT : $M_L = 0.725$, $M_S = 0.533$

> 50% corrections

・ロト ・ 日 ・ ・ ヨ ・

• ... but uncontrolled theory error from $C_1 = C_2$

Light- ν exchange mechanism

• need two-nucleon ME of double current insertion

$$\begin{aligned} 4G_F^2 m_{\beta\beta} \int d^4x d^4y S(x-y) \langle pp|T\left(J^{\mu}(x)J_{\mu}(y)\right)|nn\rangle \left\langle ee|\bar{e}_L(x)Ce_L^T(y)|0\rangle \right. \\ S(x) &= \int \frac{d^4k}{(2\pi)^4} \frac{e^{iq\cdot x}}{q^2 + i\varepsilon} \end{aligned}$$

& match to chiral EFT

• initial results for $\pi^- \rightarrow \pi^+ e^- e^-$ with light- ν

X. Feng et al, '18, D. Murphy et al, '19.

• detailed study for $2\nu\beta\beta$ at heavy pion mass

B. Tiburzi, *et al*, NPLQCD coll., '17

Conclusion

 BSM searches with nuclei are complementary & very competitive with the energy frontier

 $0\nu\beta\beta$, EDMs, DM, β decay ...

• but need to control QCD & nuclear theory !

EFTs & LQCD

- · LQCD necessary to match quark- and nucleon-level descriptions
- · EFTs necessary to go from one to few-nucleons
- and to provide input for many-body calculations

 $0\nu\beta\beta$ potentials, DM-nucleon currents, ...

 coupled with progress in many-body methods full *ab initio* description of low-energy probes of BSM physics!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Backup

▲口→ ▲圖→ ▲国→ ▲国→ 三国一

Effective operators for LNV

- no ν -mass operator in the SM
- one dimension 5 operator

S. Weinberg, '79

$$rac{1}{\Lambda}arepsilon_{ij}arepsilon_{mn}L_{i}^{T}CL_{m}H_{j}H_{n}
ightarrow rac{v^{2}}{\Lambda}
u_{L}^{T}C
u_{L}$$

neutrino masses and mixings

Effective operators for LNV

- one dimension 5 operator S. Weinberg, '79
- dim.7 operators mostly induce β decay with "wrong" ν

 \implies long range contribs. to $0\nu\beta\beta$

• dim. 9 induce short-range contributions to $0\nu\beta\beta$

TeV-scale contributions to $0\nu\beta\beta$

・ロト ・四ト ・ヨト ・ヨト

- 2

- light- ν mechanism dominates if $y \sim O(1), m_{\nu_R} \gg 1$ TeV
- but not if new-physics is light and weakly coupled y ~ O(m_e/v), m_{ν_R} ~ 1 TeV
 e. g. LR symmetric model

Effective operators for LNV

- one dim-5 @ EW scale, several dim. 7 and 9
- at GeV scale

$$\mathcal{L}_{\Delta L=2}(\nu, e, u, d) = -\frac{1}{2} (m_{\nu})_{ij} \nu^{T_j} C \nu^i + C_{\Gamma} \nu^T C \Gamma e \mathcal{O}_{\Gamma} + C_{\Gamma'} e^T C \Gamma' e \mathcal{Q}_{\Gamma'}$$

quark bilinear four-quark

match onto a EFT for nucleons

what's the form of $0\nu\beta\beta$ operator? what's the needed hadronic input?

Dim. 9 operators

《曰》 《圖》 《臣》 《臣》

æ

1. LL LL : $\mathcal{O}_1 = \bar{u}_L \gamma^\mu d_L \bar{u}_L \gamma_\mu d_L$

2. LR LR : $\mathcal{O}_2 = \bar{u}_L d_R \bar{u}_L d_R$, $\mathcal{O}_3 = \bar{u}_L^{\alpha} d_R^{\beta} \bar{u}_L^{\beta} d_R^{\alpha}$

3. LL RR : $\mathcal{O}_4 = \bar{u}_L \gamma^\mu d_L \bar{u}_R \gamma_\mu d_R, \quad \mathcal{O}_5 = \bar{u}_L^\alpha \gamma^\mu d_L^\beta \bar{u}_R^\beta \gamma_\mu d_R^\alpha$

- induce $\pi\pi$, πN and NN LNV couplings
- same set of operators in BSM $K-\bar{K}$ mixing
- for $\mathcal{O}_2 \mathcal{O}_5$, $\pi\pi$ dominates (in Weinberg's counting)

$\pi\pi$ matrix elements

A. Nicholson et al., CalLat collaboration, '18

• $\pi\pi$ matrix elements well determined in LQCD

good agreement with NDA & $K-\bar{K}$ ME

- ... but same failure of Weinberg's counting, need g_i^{NN} at LO
- $nn \rightarrow ppe^-e^-$ to determine g_i^{NN} and test power counting!

Disentangling *T* mechanisms

- to lift degeneracy \implies additional flavor or collider observables e.g. ϵ'/ϵ , $B \rightarrow X_s \gamma$, $K - \bar{K}$ oscillations
- explain LQCD/experiment discrepancy with tiny right-handed currents

$$\mathcal{L} = \frac{g}{\sqrt{2}} \left(\xi_{ud} \, \bar{u}_R \gamma^\mu d_R + \xi_{us} \, \bar{u}_R \gamma^\mu s_R \right) \, W_\mu + \text{h.c.}$$

- in this scenario: d_n , d_d and d_{Ra} in the next generation of experiments
- and correlated!

falsify with better hadronic and nuclear input

Disentangling *T* mechanisms

- to lift degeneracy \implies additional flavor or collider observables e.g. ϵ'/ϵ , $B \rightarrow X_s \gamma$, $K - \bar{K}$ oscillations
- explain LQCD/experiment discrepancy with tiny right-handed currents

$$\mathcal{L} = \frac{g}{\sqrt{2}} \left(\xi_{ud} \, \bar{u}_R \gamma^\mu d_R + \xi_{us} \, \bar{u}_R \gamma^\mu s_R \right) \, W_\mu + \text{h.c.}$$

- in this scenario: d_n , d_d and d_{Ra} in the next generation of experiments
- and correlated!

falsify with better hadronic and nuclear input

Impact on $0\nu\beta\beta$ nuclear matrix elements

• extract CIB potential V_{CIB}^{S} from AV18 or χ EFT (rescaled by c_{LNV}/c_{e^2}) & *ab initio* calculations of nuclear w.f. with same potentials

AV18:
$$M_L = 7.45$$
, $M_S = 0.48$
 χEFT : $M_L = 7.82$, $M_S = 1.15$

 $\sim 10\%$ corrections

▲ロ → ▲ 御 → ▲ 臣 → ▲ 臣 → の Q ()・

Light- ν exchange and chiral EFT

<ロ> (日) (日) (日) (日) (日)

æ

- a new source of theory uncertainties on $M^{0\nu}$
- can help convergence between methods?