Overview and Recent Progress in TMDs

Zhongbo Kang UCLA

HADRON 2019 Conference August 16 - 21, 2019

Supported by National Science Foundation

The proton in QCD

valence quarks

- Proton is made of
 - 2 up quarks + 1 down quarks
 - + any number of quark-antiquark pairs sea quarks
 - + any number of gluons

✓ Infinite many body dynamic system of quarks and gluons
 ✓ By changing x and Q, we probe different aspects of the proton wave function

Quark and gluon structure of the nucleon

- Goal: quantum tomography in terms of quarks and gluons
 - Momentum: how do the quarks, antiquarks, gluons move inside?
 - **Position**: where are they located?
 - **Orbit**: do they orbit, carry orbital angular momentum?
 - Correlation: quantum correlations between motion and overall nucleon properties, e.g., spin? How do they respond to the external probes?

Internal landscape of the nucleon

Such information are defined as a set of **parton distribution functions**

Unified view: internal landscape

Wigner distributions: a quantum version of phase-space distribution

QCD factorization

Take deep inelastic scattering as an example

Proton structure: encoded in PDFs

QCD dynamics at high-energy scale Q

Colinear PDFs

One dimensional structure of the proton: longitudinal motion

See E. R. Nocera talk

Moving forward

- 30+ years' study, good knowledge about parton's longitudinal motion: 1D
- Nucleon 3D structure: both longitudinal + transverse momentum dependent structure

Transverse Momentum Dependent parton distributions (TMDs)

Longitudinal motion only

 $f(x,k_T)$

Longitudinal + transverse motion

TMDs: rich quantum correlations

TMD parton distribution

Novel insights from TMDs

- Quantum correlation: spin-spin, spin-momentum (orbit) correlations
 - Akin to those in hydrogen atoms and topological insulators
- 3D imagining
 - Both longitudinal and transverse motion
- Orbital motion
 - Most TMDs would vanish in the absence of parton orbital angular momentum
- Color gauge invariance at a very deep level
 - Akin to Aharonov-Bohm Effect

Using the nucleon as a QCD "laboratory"

Sivers function: non-universal

 Sivers function: unpolarized quark distribution inside a transversely polarized proton

$$\begin{array}{c} & \begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \end{array} \begin{array}{c} & & \\ &$$

- ✓ 1990: introduced by D. Sivers, to describe the large single spin asymmetry measured in inclusive hadron production in p+p collisions at Fermilab
- ✓ 1993: J. Collins shows Sivers function has to vanish due to time-reversal invariance
- ✓ 2002: Brodsky, Hwang, Schmidt performed an explicit model calculation, showed the existence of the Sivers function
- ✓ 2002: Original proof missed the gauge link (needed to properly define gauge invariant distribution), once added, found Sivers function in SIDIS is opposite to that in Drell-Yan

 $f_{1T}^{\perp \mathbf{DIS}}(x,k_{\perp}) = -f_{1T}^{\perp \mathbf{DY}}(x,k_{\perp})$

Collins 02, Boer-Mulders-Pijlman 03, Kang-Qiu, 09 ...

SIDIS = -DY

Collins function: universal

Collins function: unpolarized hadron from a transversely polarized quark

$$D_{h/q}(z, p_{\perp}) = D_1^q(z, p_{\perp}^2) + \frac{1}{zM_h} H_1^{\perp q}(z, p_{\perp}^2) \vec{S}_q \cdot \left(\hat{k} \times p_{\perp}\right)$$

Spin-independent

Spin-dependent

- ✓ 2002: Metz studied the universality property of Collins function in a modeldependent way – very subtle – finally found it is universal between SIDIS and e+e-
- ✓ 2004: Collins and Metz have general arguments
- ✓ 2008: Yuan generalizes to pp
- ✓ 2010: perturbative tail calculation, demonstrate the gauge link does not contribute

$$H_1^{\perp \text{SIDIS}}(z, p_\perp^2) = H_1^{\perp e^+ e^-}(z, p_\perp^2) = H_1^{\perp \text{pp}}(z, p_\perp^2)$$

Metz 02, Collins, Metz 04, Yuan 08, Yuan, Zhou 09, Boer, Kang, Vogelsang, Yuan, PRL 10, ...

TMD factorization in a nut-shell

Factorized form and mimic "parton model"

 $\frac{d\sigma}{dQ^2 dy d^2 q_{\perp}} \propto \int d^2 k_{1\perp} d^2 k_{2\perp} d^2 \lambda_{\perp} H(Q) f(x_1, k_{1\perp}) f(x_2, k_{2\perp}) S(\lambda_{\perp}) \delta^2(k_{1\perp} + k_{2\perp} + \lambda_{\perp} - q_{\perp})$ $= \int \frac{d^2 b}{(2\pi)^2} e^{iq_{\perp} \cdot b} H(Q) f(x_1, b) f(x_2, b) S(b)$ $F(x, b) = f(x, b) \sqrt{S(b)}$ $= \int \frac{d^2 b}{(2\pi)^2} e^{iq_{\perp} \cdot b} H(Q) F(x_1, b) F(x_2, b)$ mimic "parton model"

TMD evolves

 Just like collinear PDFs, TMDs also depend on the scale of the probe = evolution

Collinear PDFs F(x,Q)

- ✓ DGLAP evolution
- $\checkmark \operatorname{Resum} \left[\alpha_s \ln(Q^2/\mu^2) \right]^n$
- ✓ Kernel: purely perturbative

$$F(x, Q_i)$$

$$\downarrow$$

$$R^{\text{coll}}(x, Q_i, Q_f)$$

$$\downarrow$$

$$F(x, Q_f)$$

TMDs $F(x,k_{\perp};Q)$

- ✓ Collins-Soper/rapidity evolution equation
- ✓ Resum $\left[\alpha_s \ln^2 (Q^2 / k_\perp^2) \right]^n$
- ✓ Kernel: can be nonperturbative when $k_{\perp} \sim \Lambda_{\rm QCD}$

$$F(x, k_{\perp}, Q_i)$$

$$\downarrow$$

$$R^{\text{TMD}}(x, k_{\perp}, Q_i, Q_f)$$

$$\downarrow$$

$$F(x, k_{\perp}, Q_f)$$

TMD evolution in a nutshell

$$F(x,k_{\perp};Q) = \frac{1}{(2\pi)^2} \int d^2 b e^{ik_{\perp} \cdot b} F(x,b;Q) = \frac{1}{2\pi} \int_0^\infty db \, b J_0(k_{\perp}b) F(x,b;Q)$$

$$F(x,b;Q) \approx C \otimes F(x,c/b^{*}) \times \exp\left\{-\int_{c/b^{*}}^{Q} \frac{d\mu}{\mu} \left(A \ln \frac{Q^{2}}{\mu^{2}} + B\right)\right\} \times \exp\left(-S_{\text{non-pert}}(b,Q)\right)$$

longitudinal/collinear part transverse part \checkmark Non-perturbative: fitted from data \checkmark The key ingredient – In(Q) piece is

The presence of non-perturbative evolution kernel makes TMD global analysis much more involved

spin-independent

TMD global analysis

Outline of a TMD global analysis: numerically more heavy

Standard processes to extract TMDs

SIDIS, Drell-Yan, dihadron in e⁺e⁻

They have a well-established TMD factorization formalism

Extremely active phenomenology - 1

Examples: Pavia, Torino, EIKV, KSPY, DEMS, SV...

	Framework	W+Y	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	LO-NLL	W	×	×	>	>	98
QZ 2001 hep-ph/0506225	NLO-NLL	W+Y	×	×	>	>	28 (?)
RESBOS resbos@msu	NLO-NNLL	W+Y	×	×	>	>	>100 (?)
Pavia 2013 arXiv:1309.3507	LO	W	~	×	×	×	1538
Torino 2014 arXiv:1312.6261	LO	W	✓ (separately)	✓ (separately)	×	×	576 (H) 6284 (C)
DEMS 2014 arXiv:1407.3311	NLO-NNLL	W	×	×	>	>	223
EIKV 2014 arXiv:1401.5078	LO-NLL	W	1 (x,Q²) bin	1 (x,Q²) bin	>	>	500 (?)
SIYY 2014 arXiv:1406.3073	NLO-NLL	W+Y	×	۲	>	>	200 (?)
Pavia 2017 arXiv:1703.10157	LO-NLL	W	~	2	~	>	8059
SV 2017 arXiv:1706.01473	NNLO-NNLL	W	×	×	~	~	309
BSV 2019 arXiv:1902.08474	NNLO-NNLL	W	×	×	~	~	457

Extremely active phenomenology - 2

Example: Pavia group

Extremely active phenomenology - 3

Example: our group

Sivers asymmetry from SIDIS

Sivers asymmetry has been measured in SIDIS process: HERMES, COMPASS, JLab $\ell + p^{\uparrow} \rightarrow \ell' + \pi(p_T) + X$

$$\frac{d\sigma(S_{\perp})}{dx_B dy dz_h d^2 P_{h\perp}} = \sigma_0(x_B, y, Q^2) \left[F_{UU} + \sin(\phi_h - \phi_s) F_{UT}^{\sin(\phi_h - \phi_s)} \dots \right]$$

Current status of Sivers extraction

Large uncertainties

- EIKV [1401.5078]
- PV11 [1107.5755]
- TC18 [1806.10645]
- PV19 preliminary ≈ UCLA preliminary

Experimental evidence of sign change

- STAR measurements: the data favors sign change
- Both theory and experiment has large uncertainty: will be improved with 2017 run

KQ = Kang, Qiu STAR, arXiv:1511.06003, PRL COMPASS, 1704.00488

Collins function: universal

Collins function: unpolarized hadron from a transversely polarized quark

$$D_{h/q}(z,p_{\perp}) = D_1^q(z,p_{\perp}^2) + \frac{1}{zM_h}H_1^{\perp q}(z,p_{\perp}^2)\vec{S}_q \cdot \left(\hat{k} \times p_{\perp}\right)$$

Spin-independent

Spin-dependent

- ✓ 2002: A. Metz studied the universality property of Collins function in a modeldependent way – very subtle – finally found it is universal between SIDIS and e+e-
- ✓ 2004: Collins and Metz have general arguments
- ✓ 2008: Yuan generalizes to pp
- ✓ 2010: Boer, Kang, Vogelsang, and Yuan perform perturbative tail calculation, demonstrate the gauge link does not contribute

$$H_1^{\perp \text{SIDIS}}(z, p_\perp^2) = H_1^{\perp e^+ e^-}(z, p_\perp^2) = H_1^{\perp \text{pp}}(z, p_\perp^2)$$

Metz 02, Collins, Metz 04, Yuan 08, Boer, Kang, Vogelsang, Yuan, PRL 10, ...

Collins asymmetry from SIDIS and e+e-

SIDIS and e+e-: combined global analysis

 $Z_{\text{collins}}^{h_1h_2} \sim H_1^{\perp}(z_1, p_{1\perp}) H_1^{\perp}(z_2, p_{2\perp})$

Collins function

$$\frac{d\sigma^{e^+e^- \to h_1 h_2 + X}}{dz_{h1} dz_{h2} d^2 P_{h\perp} d\cos\theta} = \frac{N_c \pi \alpha_{\rm em}^2}{2Q^2} \left[\left(1 + \cos^2\theta \right) Z_{uu}^{h_1 h_2} + \sin^2\theta \cos(2\phi_0) Z_{\rm collins}^{h_1 h_2} \right]$$

Global fitting of Collins asymmetry

25

Fitted TMDs

Fitted quark transversity and Collins function

Using lattice data (tensor charge) to constrain transversity

Novel opportunities: TMDs through jets

- Study transverse momentum distribution of hadrons inside a fully reconstructed jet
 - Probe TMD fragmentation functions
 - Sensitive to gluon TMDs: for inclusive jet production at the LHC

Kang, Liu, Ringer, Xing, 1705.08443

Collins azimuthal asymmetry

Test universality of Collins function between e+p, e+e, and p+p

Test TMD evolution

Kang, Prokudin, Ringer, Yuan, 1707.00913

LHCb: Z-tagged jet – quark jet

z_h distribution

Kang, Lee, Terry, Xing, arXiv:1906.07187

j_T distribution does now work well with Pythia

Very active theoretical research

DOE TMD Collaboration

https://sites.google.com/a/lbl.gov/tmdwiki/

-61

Navigation

Main Overview Collaboration calendar Meetings Publications Conference Talks Code Packages

Topical Collaboration for the Coordinated Theoretical Approach to Transverse Momentum Dependent Hadron Structure in QCD

Search this site

Active experimental programs

- US: Jefferson Lab 12 GeV + RHIC spin program
- COMPASS + HERMES + BELLE + BES

Electron Ion Collider

Brookhaven National Laboratory in New York is a potential host for the Electron-Ion Collider.

NUCLEAR PHYSICS

Billion-dollar collider gets thumbs up

Proposed US electron-ion smasher wins endorsement from influential nuclear-science panel.

Summary

- Study on TMDs are extremely active in the past few years, lots of progress have been made
- Nucleon as a QCD "laboratory": in particular topics/ideas that are similar to those in AMO/Condensed Matter Physics
 - Quantum correlation: spin-spin correlation, spin-orbit correlation, orbital motion, quantum phase interference effects ...
 - 3D imaging of the nucleon at the most fundamental level
- Exciting opportunities: lots of experiments activities/measurements being/to be performed/planned in current and future experimental facilities (most importantly, the EIC)

Thank you!