Sea quark unpolarized $\operatorname{GPD}(\xi=0)$ and Sivers function in proton with chiral Lagrangian

Fangcheng He (Institute of High Energy Physics) Collaboration with Ping Wang

Guilin, August 20, 2019

Outline

- Generalized parton distribution

Convolution formula for GPD
Numerical results (GPD, PDF, Form Factor)

- Sivers function

Gauge invariant bilocal pion operator
Convolution formula for TMD
Numerical result (The first momentum of Sivers function)

- Summary and outlook

Generalized parton distribution

Deeply virtual Compton scattering

Forward Compton scattering

Deeply virtual Compton scattering(Ji, PRD55(1997))

Parameters in GPDs:

The square of transfer momentum: $t=\Delta^{2}=\left(p^{\prime}-p\right)^{2}$
Skewness: $\xi=-\frac{\Delta \cdot n}{2 P \cdot n}=-\frac{\Delta^{+}}{2 P^{+}}$
Average parton momentum fraction: $x=\frac{k \cdot n}{P \cdot n}=\frac{k^{+}}{P^{+}}$

Unpolarized quark GPDs of nucleon

Unpolarized quark GPDs of nucleon:

$$
\begin{aligned}
V^{q} & =\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x(P \cdot z)}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{1}{2} z\right) \tilde{\eta} q\left(\frac{1}{2} z\right)|p\rangle\right|_{z=\lambda n} \\
& =\frac{1}{2 P \cdot n}\left[H^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \tilde{\eta} u(p)+E^{q}(x, \xi, t) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{\beta \alpha} \Delta_{\alpha} \tilde{n}_{\beta}}{2 m} u(p)\right]
\end{aligned}
$$

Parton distribution function $(\xi=t=0)$:

$$
H^{q}(x>0,0,0)=q(x), \quad H^{q}(x<0,0,0)=-\bar{q}(-x)
$$

Dirac and Pauli Form factor:

$$
F_{1}^{q}(t)=\int_{-1}^{1} d x H^{q}(x, \xi, t), \quad F_{2}^{q}(t)=\int_{-1}^{1} d x E^{q}(x, \xi, t)
$$

Electromagnetic Form factor:

$$
G_{E}^{q}=F_{1}^{q}(t)-\frac{t}{4 m_{p}^{2}} F_{2}^{q}(t), \quad G_{M}^{q}=F_{1}^{q}(t)+F_{2}^{q}(t)
$$

Convolution formula $(\xi=0)$

Matrix element for GPDs in quark level:

where O_{H} is twist-2 hadron operator, $q_{H}^{v}\left(\frac{x}{y}, 0, t\right)$ is quark valance GPD in hadron.
quark valance GPD

One loop Feynman diagrams

Hadron operator for $\pi^{+}: \quad O_{\pi^{+}}=\pi^{-}\left(\frac{z}{2}\right) \partial^{+} \pi^{+}\left(-\frac{z}{2}\right)-\partial^{+} \pi^{-}\left(\frac{z}{2}\right) \pi^{+}\left(-\frac{z}{2}\right)$
The hadron matrix element can be written as
$V_{H}=\int \frac{d z^{-}}{2 \pi} e^{i y(P z)}<p^{\prime}\left|O_{\pi^{+}}\right| p>=\bar{u}\left(p^{\prime}\right)\left\{\gamma^{\mu} f(y, 0, t)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{N}} g(y, 0, t)\right\} u(p)$,
Rainbow diagram

Splitting functions

For sea quark GPDs in the proton can be obtained by convolution formalism:
$H^{\bar{d}}(x, 0, t)=\int_{x}^{1} \frac{d y}{y} H_{\pi^{+}}^{\bar{d}}\left(\frac{x}{y}, 0, t\right) f(y, 0, t), \quad E^{\bar{d}}(x, 0, t)=\int_{x}^{1} \frac{d y}{y} H_{\pi^{+}}^{\bar{d}}\left(\frac{x}{y}, 0, t\right) g(y, 0, t)$
$H_{\pi^{+}}^{\bar{d}}\left(\frac{x}{y}, 0, t\right)$ is the valance quark GPD in π^{+}.
To get rid of UV divergence, we use a dipole regulator: $\tilde{F}(k)=\left(\frac{\Lambda^{2}-M_{\phi}^{2}}{\Lambda^{2}-k^{2}}\right)^{2}$

Feynman diagrams for splitting functions

One-loop contributions to the proton splitting functions. The double-solid, solid, dashed and are for the octet, decuplet baryons and pseudoscalar mesons, respectively. The rectangle and blackdot represent magnetic and additional interaction vertex. cross represents an operator insertion.

Quark valance GPDs

PDF flavour symmetry(X.G.Wang et.al ,PRD(2016)):
Valance quark in mesons:
$\bar{s}_{K^{0}}(x)=\bar{s}_{K^{+}}(x)=\bar{d}_{\pi^{+}}(x)=\bar{u}_{\pi^{-}}(x)$

Valance quark in Baryons:
Extend to GPDs

$$
\begin{aligned}
s_{\Lambda}(x) & =\frac{1}{3}[2 u(x)-d(x)] \\
s_{\Sigma^{+}}(x) & =s_{\Sigma^{0}}(x)=d(x) \\
s_{K^{+}}^{(\text {tad) }}(x) & =\frac{1}{2} u(x), \quad s_{K^{0}}^{(\text {tad })}(x)=d(x) \\
s_{\Sigma^{*}, 0}(x) & =s_{\Sigma^{*},+}(x)=\frac{1}{3}[2 u(x)-d(x)]
\end{aligned}
$$

quark distibutions for KR diagrams:

$$
\begin{aligned}
& s_{\Sigma^{+}}^{(K R)}(x)=s_{\Sigma^{0}}^{(K R)}(x)=\frac{\Delta d(x)}{F-D}, s_{\Lambda}^{(K R)}(x)=\frac{2 \Delta u(x)-\Delta d(x)}{3 F+D}, \\
& s_{\Sigma^{*+}}^{(K R)}(x)=s_{\Sigma^{* 0}}^{(K R)}(x)=\frac{2 \Delta d(x)-\Delta u(x)}{-2 D},
\end{aligned}
$$

GPD flavour symmetry:
Valance quark in mesons:
$H_{K^{+}}^{\bar{s}}=H_{K^{0}}^{\bar{s}}=H_{\pi^{+}}^{\bar{d}}=H_{\pi^{-}}^{\bar{u}}(x, 0, t)$

Valance quark in Baryons:

$$
\begin{aligned}
H_{\Lambda}^{s}(x, 0, t) & =\frac{1}{3}\left[2 H_{p}^{u}(x, 0, t)-H_{p}^{d}(x, 0, t)\right] \\
E_{\Lambda}^{s}(x, 0, t) & =\frac{1}{2 \kappa_{u}-\kappa_{d}}\left[2 E_{p}^{u}(x, 0, t)-E_{p}^{d}(x, 0, t)\right]
\end{aligned}
$$

quark GPDs for KR diagrams:
$H_{\Lambda}^{s(\mathrm{KR})}(x, 0, t)=\frac{1}{D+3 F}\left[2 \tilde{H}_{p}^{u}(x, 0, t)-\tilde{H}_{p}^{d}(x, 0, t)\right]$,
\qquad
quark GPDs for transition diagrams:

$$
E_{T}^{s}(x, 0, t)=\frac{1}{\kappa_{u}-2 \kappa_{d}}\left[E_{p}^{u}(x, 0, t)-2 E_{p}^{d}(x, 0, t)\right]
$$

Numerical results($\xi=0)$

Numerical results($\xi=0)$

Numerical results(sea quark asymmetry)

$$
<\bar{d}-\bar{u}>=\int_{0}^{1}(\bar{d}(x)-\bar{u}(x)) d x=0.090-0.131, \quad<\bar{d}-\bar{u}>=0.118(12)
$$

The first momentum for strange quark:
W. Bentz, et.al,Physics Letters B 693 (2010) 462-466
$<x s^{-}>=<x(s-\bar{s})>=\int_{0}^{1} x(s(x)-\bar{s}(x)) d x=0.0007-0.0021$,
NNPDF at $\mathrm{Q}=1 \mathrm{GeV}:\left\langle x s^{-}\right\rangle=0.0009-0.0053$.

	$\left\langle x s^{-}\right\rangle$
Mason et al. [8]	0.00196 ± 0.00143
NNPDF [9]	0.0005 ± 0.0086
Alekhin et al. [30]	$0.0013 \pm 0.0009 \pm 0.0002$
MSTW [31]	$0.0016_{-0.0009}^{+0.0011}$
CTEQ [32]	$0.0018_{-0.00004}^{+0.0016}$
This work (Eq. (10))	0.0 ± 0.0020

Numerical results(form factors)

Strange Dirac and Pauli Form factor:

$$
F_{1}^{S}=\int_{0}^{1}\left\{H^{S}(x, 0, t)-H^{\bar{S}}(x, 0, t)\right\} d x \quad F_{2}^{S}=\int_{0}^{1}\left\{E^{S}(x, 0, t)-E^{\bar{S}}(x, 0, t)\right\} d x
$$

Strange Electromagnetic Form factor:

$$
G_{E}^{S}=F_{1}^{S}(t)-\frac{t}{4 m_{p}^{2}} F_{2}^{S}(t) \quad G_{M}^{S}=F_{1}^{S}(t)+F_{2}^{S}(t)
$$

Sivers function

Single spin asymmetry in SIDIS

Semi-inclusive $\operatorname{DIS}\left(e(l)+N(P) \rightarrow e\left(l^{\prime}\right)+h\left(P_{h}\right)+X\right)$

The SIDIS transverse single spin asymmetry can be defined as

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=2 \frac{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}-d \sigma^{\downarrow}\right] \sin \left(\phi_{h}-\phi_{S}\right)}{\int d \phi_{S} d \phi_{h}\left[d \sigma^{\uparrow}+d \sigma^{\downarrow}\right]}
$$

Sivers function

Sivers function is introduced by Sivers (D. Sivers,PRD(1990)) to explain the single spin asymmetry. It describes the difference between the transverse momentum distribution of unpolarized quark in the nucleons which transversely polarized in opposite direction.

Schematic depiction:

Final state interaction

BHS model (S. Brodsky, Dae Sung Hwang, and Ivan Schmidt, 2002)

The Sivers TMD is obtained by considering the one-gluon exchange between active quark and spectator quark.
$f_{1 T}^{\perp} \propto \operatorname{Im}\left(M\left[\gamma p\left(J_{p}^{z}=\frac{1}{2}\right) \rightarrow F\right]^{*} M\left[\gamma p\left(J_{p}^{z}=-\frac{1}{2}\right) \rightarrow F\right]\right) ;$
and
$M\left[\gamma^{*} p\left(J_{p}^{z}= \pm \frac{1}{2}\right) \rightarrow F\right]=M\left[\gamma^{*} p\left(J_{p}^{z}= \pm \frac{1}{2}\right) \rightarrow F\right]_{L} e^{i \chi_{ \pm}}$

Gauge invariant bilocal quark operator

The gauge invariant parton TMD is defined as (Ji and Yuan,PLB543(2002))

$$
f_{1}^{q}\left(x, \vec{k}_{\perp}\right)-\frac{\epsilon^{i j} k_{\perp}^{i} S_{\perp}^{j}}{m_{p}} f_{1 T}^{\perp q}\left(x, \vec{k}_{\perp}\right)=\frac{1}{2} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{\perp}}{(2 \pi)^{3}} e^{-i x P^{+} \xi^{-}+i \vec{k}_{\perp} \cdot \vec{\xi}_{\perp}}\left\langle P, \vec{S}_{\perp}\right| \mathcal{O}^{q}\left|P, \vec{S}_{\perp}\right\rangle
$$

Where

$$
\mathcal{O}^{q}=\bar{q}\left(\xi^{-}, \vec{\xi}_{\perp}\right) \mathcal{L}_{\xi_{\perp}}^{\dagger}\left(\infty, \xi^{-}\right) \gamma^{+} \mathcal{L}_{0}(\infty, 0) q(0,0)
$$

The gauge link is from final-state inetraction
J. Collins, Phys.Lett. B(2002)
A.V. Belitsky, X. Ji, F. Yuan, Nucl.Phys. B(2002)
X. Ji, F. Yuan, Phys.Lett. B543(2002)
D. Boer, P.J. Mulders and F. Pijlman, Nucl.Phys. B667 (2003)

(a)

(b)

(c)

Distribution function of pion in proton(splitting function)

For π^{+}, the bilocal operator can be defined as

$$
\mathcal{O}^{\pi^{+}}=i\left[\pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \partial^{+} \pi^{+}(0)-\partial^{+} \pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \pi^{+}(0)\right]
$$

Compare with the quark bilocal operator O_{q}, the gauge link is missing. It is a Timereversal even operator and never contributes to T-odd Sivers function, means that the Sivers function of a pion in proton is zero. On the other hand, pion is color singlet, gluon can not be introduced as the gauge link.

Hidden symmetry

The lowest order Lagrangian in CHPT

$$
\mathcal{L}=\frac{1}{4} f_{\pi}^{2} \operatorname{tr}\left(\left(D^{\mu} U\right)^{\dagger}\left(D_{\mu} U\right)\right), \quad U=\exp \left(2 i \frac{\pi^{a} T^{a}}{f_{\pi}}\right)
$$

The chiral field U transforms as $U \rightarrow L U R^{+}$.
the chiral Lagrangian can be written in another form: $\quad \mathcal{L}=f_{\pi}^{2} \operatorname{Tr}\left[\alpha_{\mu} \alpha^{\mu}\right]$,
Where α_{μ} is defined as $\alpha_{\mu}=\frac{1}{2 i}\left(D_{\mu} \xi_{L} \cdot \xi_{L}^{\dagger}-D_{\mu} \xi_{R} \cdot \xi_{R}^{\dagger}\right)$. Chiral covariant derivatives:

$$
D_{\mu} \xi_{L / R}=\partial_{\mu} \xi_{L / R}+i g V_{\mu} \xi_{L / R}+i \xi_{L / R} L_{\mu} / R_{\mu},
$$

The Lagrangian is invariant under transformation:

$$
\begin{align*}
& \xi_{L}(x) \rightarrow h(x) \xi_{L}(x) g_{L}^{\dagger}, \quad \xi_{R}(x) \rightarrow h(x) \xi_{R}(x) g_{R}^{\dagger} \\
& V_{\mu}(x) \rightarrow i h(x) \partial_{\mu} h(x)^{\dagger}+h(x) V_{\mu}(x) h(x)^{\dagger}, \tag{4}
\end{align*}
$$

$$
V^{\mu}=\vec{\rho}^{\mu} \cdot \vec{\tau}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \rho^{0} & \rho^{+} \\
\rho^{-} & -\frac{1}{\sqrt{2}} \rho^{0}
\end{array}\right)^{\mu} .
$$

$h(x)$ is the gauge transformation for hidden symmetry.

Gauge invariant bilocal pion operator

Nonlocal action can be written as

$$
\mathcal{S}=\int d x d y f_{\pi}^{2} \operatorname{Tr}\left[\alpha_{\mu}(y) W(y, x) \alpha^{\mu}(x) W^{\dagger}(y, x)\right]
$$

$$
W(y, x)=P e^{-i g \int_{x}^{y} d d_{v} \nu^{\nu}(z)}
$$

gauge link

He and Wang (1904.06815)

$$
\alpha_{\mu}=\frac{1}{2 i}\left(D_{\mu} \xi_{L} \cdot \xi_{L}^{\dagger}-D_{\mu} \xi_{R} \cdot \xi_{R}^{\dagger}\right) .
$$

$$
D_{\mu} \xi_{L / R}=\partial_{\mu} \xi_{L / R}+i g V_{\mu} \xi_{L / R}+i \xi_{L / R} L_{\mu} / R_{\mu},
$$

Traditional chiral Lagrangian: $\xi_{L}^{\dagger}=\xi_{R}=\xi=\exp \left(\mathrm{i} \pi / f_{\pi}\right)$ and $L_{\mu}=R_{\mu}=\tau_{q} v_{\mu}$, where $\tau_{q}=\operatorname{diag}\left(\delta_{q u}, \delta_{q d}\right)$
At the leading order, the current that couples to the external field can be written as

$$
\begin{aligned}
& \mathcal{J}_{\bar{d} / \pi^{+}}^{\mu}=\mathcal{J}_{u / \pi^{+}}^{\mu}=i\left[\pi^{-}(y) \partial^{\mu} \pi^{+}(x)-\partial^{\mu} \pi^{-}(y) \pi^{+}(x)\right] \times\left[1-i \sqrt{2} g \int_{x}^{y} d z_{\nu} \rho^{0 \nu}(z)\right] . \\
& (0, \overline{0}-1 \\
& \text { Change it to be bilocal opeator } \\
& \mathcal{O}^{\pi^{+}}=i\left[\pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \partial^{+} \pi^{+}(0)-\partial^{+} \pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \pi^{+}(0)\right] \text {; } \\
& \mathcal{O}_{\text {Sivers }}^{\pi^{+}}=+\sqrt{2} g\left[\pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \partial^{+} \pi^{+}(0)-\partial^{+} \pi^{-}\left(y^{-}, \vec{y}_{\perp}\right) \pi^{+}(0)\right]\left\{\int_{0}^{\infty} d z^{-} \rho^{0+}\left(z^{-}, 0\right)+\int_{\infty}^{y^{-}} d z^{-} \rho^{0+}\left(z^{-}, \vec{y}_{\perp}\right)\right\} \text {. }
\end{aligned}
$$

Sivers function of pion in proton

The Sivers distribution function of a pion in proton $f_{1 T}^{\pi / p}\left(z, \vec{k}_{\perp}\right)$

$$
-\frac{\epsilon^{i j} k_{\perp \pi}^{i} S_{\perp}^{j}}{m_{p}} f_{1 T}^{\pi / p}\left(z, \vec{k}_{\perp \pi}\right)=\frac{1}{2} \int \frac{d y^{-} d^{2} \vec{y}_{\perp}}{(2 \pi)^{3}} e^{-i\left(z P^{+} y^{-}-\vec{y}_{\perp} \cdot \vec{k}_{\perp \pi}\right)}\left\langle P, \vec{S}_{\perp}\right| \mathcal{O}_{\text {Sivers }}^{\pi}\left|P, \vec{S}_{\perp}\right\rangle
$$

One loop diagrams:

FIG. 1: The Sivers distribution function of a pseudoscalar meson in the nucleon. The solid, dashed, double dashed, and double solid lines are for the octet baryons, pseudoscalar mesons, vector mesons and decuplet baryons respectively. The thick solid line is the eikonal propagator and the dotted line means the on-shell cut.

Final state interaction in hadron level

FIG. 2: Final-state interaction in Sullivan process and collinear approximation. The dashed, double dashed and wave lines are for the pseudoscalar mesons, vector mesons and photons respectively. The gray bubble represents baryon, including octet, decuplet and octet-decuplet transition.

In collinear approximation, The $\rho \pi \pi$ vertex and psedoscalar propagator turns into the eikonal propagator approximately as

$$
\frac{(2 k+2 q+l)^{-}}{(k+q+l)^{2}-M^{2}} \approx \frac{(2 k+2 q+l)^{-}}{(2 k+2 q+l) l+i \epsilon} \approx \frac{1}{l^{+}+i \epsilon} .
$$

Convolution formula

quark Sivers function: $\quad \frac{\epsilon^{j i} k_{\perp}^{i} S_{\perp}^{j}}{m_{p}} f_{1 T}^{q}\left(x, \vec{k}_{\perp}\right)=\frac{1}{2} \int \frac{d \xi^{-} d^{2} \vec{\xi}_{\perp}}{(2 \pi)^{3}} e^{-i x P^{+} \xi^{-}+i \vec{k}_{\perp} \cdot \vec{\xi}_{\perp}}\left\langle P, \vec{S}_{\perp}\right| \mathcal{O}^{q}\left|P, \vec{S}_{\perp}\right\rangle$,
pion Sivers function: $\quad-\frac{\epsilon^{i j} k_{\perp \perp 1}^{i} S_{\perp}^{j}}{m_{p}} f_{1 T}^{\pi / p}\left(z, \vec{k}_{\perp \pi}\right)=\frac{1}{2} \int \frac{d y^{-} d^{2} \vec{y}_{\perp}}{(2 \pi)^{3}} e^{-i\left(z P^{+} y^{-}-\vec{y}_{\perp} \cdot \vec{k}_{\perp \pi}\right)}\left\langle P, \vec{S}_{\perp}\right| \mathcal{O}_{\text {Sivers }}^{\pi}\left|P, \vec{S}_{\perp}\right\rangle$

Convolution formula for TMD:

$$
k_{\perp}^{i} f_{1 T}^{\bar{q} / p}\left(x, \vec{k}_{\perp}\right)=\int d^{2} \vec{k}_{\perp \pi} \int_{x}^{1} \frac{d z}{z} f_{1 v}^{\bar{q} / \pi}\left(\frac{x}{z}, \vec{k}_{\perp}-\frac{x}{z} \vec{k}_{\perp \pi}\right) f_{1 T}^{\pi / p}\left(z, \vec{k}_{\perp \pi}\right) k_{\perp \pi}^{i},
$$

The first moment of Sivers function:

$$
\begin{gathered}
\Delta^{N} f_{\bar{q}}^{(1)}(x)=\int d^{2} \vec{k}_{\perp} \frac{-k_{\perp}^{2}}{2 m_{p}^{2}} f_{1 T}^{\bar{q} / p}\left(x, \vec{k}_{\perp}\right)=\frac{1}{2 m_{p}^{2}} \int_{1}^{x} d\left(\frac{x}{z}\right) f_{1 v}^{\bar{q} / \pi}\left(\frac{x}{z}\right) \int d^{2} \vec{k}_{\perp \pi} \vec{k}_{\perp \pi}^{2} f_{1 T}^{\pi / p}\left(z, \vec{k}_{\perp \pi}\right) \\
\text { unpolarized valance quark distribution in pion }
\end{gathered}
$$

Numerical result

$$
\Delta^{N} f_{\bar{q}}^{(1)}(x)=-\int d^{2} \vec{k}_{\perp} \frac{k_{\perp}^{2}}{2 m_{p}^{2}} f_{1 T}^{\bar{q} / p}\left(x, \vec{k}_{\perp}\right)
$$

A. Bacchetta and M. Radici(Phys. Rev. Lett. 107 (2011) 212001)

$$
f_{1 T}^{\perp \bar{q}}(x)=\int d^{2} \vec{k}_{\perp} \frac{k_{\perp}^{2}}{2 m_{p}^{2}} f_{1 T}^{\bar{q} / p}\left(x, \vec{k}_{\perp}\right)
$$

Large Nc result(P. V. Pobylitsa arXiv:hep-ph/0301236) :

$$
\left(f_{1 T}^{\perp(\pm)}\right)_{t_{1} t_{2}}=-\frac{8}{3} I_{3}\left(\tau^{3}\right)_{t_{2} t_{1}} M^{2} N_{c} V_{4}^{(\pm)}
$$

Summary and Outlook

In summary:

I. We calculate the sea quark zero-skewness GPDs, the asymmetry of sea quark PDF and strange electromagnetic Form factor can be got from GPDs, which are consistent with experimental or Lattice result.
II. We calculate the sea quark Sivers function, the vector meson is introduced as gauge link in hardon level, our result is consistent with the prediction in the large Nc limit and some phenomenological extractions.

In outlook:

I. We can calculate GPDs when skewness is nonzero, polarized GPDs...
II. Maybe we can get a relation between GPDs and TMDs with Chiral Larangian.

Thanks for your attention!

Nonlocal chiral Lagrangian

Local interaction including K meson

$$
\mathcal{L}_{K}^{\text {local }}=-\int d x \frac{D+3 F}{\sqrt{12} f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x)\left(\partial_{\mu}+i e \mathscr{A}_{\mu}^{s}(x)\right) K^{+}(x),
$$

Corresponding nonlocal Lagrangian

$$
\mathcal{L}_{K}^{n l}=-\int d x \int d y \frac{D+F}{\sqrt{12} f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x)\left(\partial_{x, \mu}+i e \mathscr{A}_{\mu}(x)\right)\left(\exp \left[i e \int_{x}^{y} d z_{\nu} \mathscr{A}^{\nu}(x)\right] k^{+}(y) F(x-y)\right),
$$

The Lagrangian is gauge invariant under the following transformation:

$$
K^{+}(y) \rightarrow e^{-i \alpha(y)} K^{+}(y), \quad \Lambda(x) \rightarrow e^{i \alpha(x)} \Lambda(x), \quad \mathscr{A}_{\mu}(x) \rightarrow \mathscr{A}_{\mu}(x)-\frac{1}{e} \partial_{\mu} \alpha(x)
$$

EM currents including K meson:

$$
\begin{aligned}
\mathcal{L}^{n o r} & =-i e \int d x \int d y \frac{D+F}{\sqrt{12} f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) F(x-y) K^{+}(y) \mathscr{A}_{\mu}(x), \\
\mathcal{L}^{a d d} & =-i e \int d x \int d y \frac{D+F}{\sqrt{12} f} \bar{p}(x) \gamma^{\mu} \gamma_{5} \Lambda(x) \partial_{x, \mu}\left(F(x-y) \int_{x}^{y} d z_{\nu} \mathscr{A}^{\nu}(z) K^{+}(y)\right)
\end{aligned}
$$

