Experimental study of double hypernuclei at J-PARC

Junya Yoshida (Advanced Science Research Center, JAEA) On behalf of J-PARC E07 Collaboration

NAGARA, double Λ hypernucleus (2001)

PHYSICAL REVIEW C 88, 014003 (2013)

$$\Xi^{-} + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \rightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

 $B_{\Lambda\Lambda} = 6.91 + 0.16 \text{ MeV}$

Prog. Theor. Exp. Phys. 2015, 033D02

$$\Xi^{-} + {}^{14}N \rightarrow {}^{15}_{\Xi}C \rightarrow {}^{10}_{\Lambda}Be + {}^{5}_{\Lambda}He \rightarrow {}^{10}_{\Lambda}Be^{*} + {}^{5}_{\Lambda}He$$

 $B_{\Xi^-} = 1.03 + 0.18$ or 3.87 + 0.21 MeV

Photographic emulsion sheet for double strangeness nuclei

* Thick sheets: Thickness =~1 mm -> ~0.5 mm (after photographic development)
* Optical microscope with computer controlled stage and digital image sensor

Thickness :1.0 mm \rightarrow 0.6 mm after dev.

Thickness :1.0 mm \rightarrow 0.6 mm after dev.

Thickness :1.0 mm \rightarrow 0.6 mm after dev.

100 µm

Thickness :1.0 mm \rightarrow 0.6 mm after dev.

- Tagging Ξ⁻ production by K⁺ spectrometer
- Tracking the Ξ^- with SSD-tracker
- Detecting the E⁻ track in the 1st emulsion sheet
- Detecting double hypernucleus at the endpoint of Ξ^- track

* ~80 Ξ^{-} stop events

Nuclear Physics A 828 (2009) 191–232

* Existence of double Lambda hypernucleus has been confirmed

PHYSICAL REVIEW C 88, 014003 (2013)

* At least ~650 Ξ⁻ stop events * NAGARA, KISO

J-PARC E07 (2016-17)

* ~10k Ξ stop events

* Systematic study of S=-2 system

J-PARC Hadron hall K1.8 beamline

"Emulsion mover" for J-PARC E07

"Emulsion mover" for J-PARC E07

Beam exposure

2016 May-Jun. KURAMA Commissioning : 5.0 days Physics : 4.9 days

2017 4/15 - 4/19 (44 kW) Emulsion exposure : 50 h calibration : 19 h

2017 5/25 - 6/29 (10 - 37.5 kW) Emulsion exposure : 23.4 days calibration : 8.5 h

Jul. 1st 2017, Run end photo @K1.8 counting room

Year	Beam power [kW]	K ⁻ intensity [/spill]	K⁻ purity	Time [h/mod.]	Integrated K ⁻ [G/mod.]	DAQ Eff.	Emulsion modules
2016	42	260	81%	6.5	0.92	83%	18
2017	44	310	83%	5.6	1.0	84%	8
2017	37.5	280	82%	6.0	1.0	89%	78
2017	10 - 35	120 - 270	50% - 82%	6.5 – 9.0	0.52 - 1.0	89-92%	14

<u>118</u> emulsion modules * 13 emulsion sheets

Photographic processing: completed in Feb. 2018

Automated Track Following (Sample Movie) https://youtu.be/3fiWI5tDx2U

Found event list (2019 Aug.)

	KEK-PS E373	J-PARC E07
Ξ^{-} stop with nuclear fragment	430	1.8k
S=-2 system	9	30

Found event list (2019 Aug.)

	KEK-PS E373	J-PARC E07
Ξ^{-} stop with nuclear fragment	430	1.8k
S=-2 system	9	30

How we identify the nuclides?

Step1: Measurement of geometrical feature by image processing

How we identify the nuclides?

Step2: Evaluation of kinematic consistency for all possible cases.

Taking all possible combinations of nuclide for the parent and daughter particles.

Туре	# of case	Example
Daughters without strangeness	65	π^{-} , p, d, t, ³ He, ⁴ H, ⁴ He, ¹⁹ B, ¹⁹ C, ¹⁹ N, or ¹⁹ O
Neutral particles	10	n, 2n, 3n, π^0 , π^0 +n, π^0 +2n, Λ , Λ +n, Λ +2n, or none
Single Λ hypernuclei	41	${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ${}^{5}_{\Lambda}$ He,, ${}^{17}_{\Lambda}$ N, or ${}^{18}_{\Lambda}$ N

Single- Λ hypernucleus (#2)		#7	#8	#9	χ^2	Range (#9) [μ m]	Comment	
4 He	\rightarrow	³ He	p	π^{-}	33.1	16800	- rejected	
$^{5}_{\Lambda}$ He	\rightarrow	⁴ He	p	π^-	5.23	16270	5	Possible solution.
$\frac{8}{\Lambda}$ Li	\rightarrow	⁶ Li	_d_	π^{-}	93.6	7906	- rejected	
$\frac{9}{\Lambda}$ Li	\rightarrow	⁷ Li	d	π^{-}	105	10 660	- rejected	

Blackness of tracks are consistent to the solution.

Possible interpretations	B _{^/} [MeV]	kinematic fitting χ^2 (DOF=3)
Ξ^{-} + ¹⁶ O -> $_{\Lambda\Lambda}^{10}$ Be + ⁴ He + t	15.05 +- 0.11	11.5
Ξ^{-} + ¹⁶ O -> $_{\Lambda\Lambda}^{11}$ Be + ⁴ He + d	19.07 +- 0.11	7.3
Ξ^{-} + ¹⁶ O -> $_{\Lambda\Lambda}^{12}Be^{*}$ + ⁴ He + p	13.68 +- 0.11 + E _{ex}	11.3

• $_{\Lambda\Lambda}^{11}$ Be is the most probable in term of kinematic analysis.

	$\Delta B_{\Lambda\Lambda}$ [MeV]
${}_{\Lambda\Lambda}{}^{6}\text{He}$	0.67 +- 0.17
	where, B ₌₋ = 0.13 MeV

MINO Event (2019) Prog. Theor. Exp. Phys. 2019, 021D02

where, $B_{\Xi_{-}} = 0.23 \text{ MeV}$

New information on $\Lambda\Lambda$ interaction in other nuclide

Found event list (2019 Aug.)

	KEK-PS E373	J-PARC E07
Ξ^{-} stop with nuclear fragment	430	1.8k
S=-2 system	9	30

Condition:

 $(\Xi^{-}+{}^{12}C,{}^{14}N, \text{ or }{}^{16}O) \rightarrow 2 \text{ single } \Lambda \text{ hypernuclei (+ neutrons)}$

- Only " $_{\Lambda}^{10}$ Be + $_{\Lambda}^{5}$ He" was accepted at the 1st vertex
- The decay of #1 and #2 are consistent with that of ${}_{\Lambda}{}^{10}$ Be and ${}_{\Lambda}{}^{5}$ He

Measured $B_{\underline{z}}$ is significantly larger than that of atomic 3D state (0.174 MeV) $\rightarrow \Xi$ hypernucleus!

* $B_{\Xi_{-}}$ of IBUKI is determined without uncertainty due to the excitation of daughters. * **Multiple candidates of** Ξ **hypernucleus (B**_{Ξ_{-}} > **3D atomic level) are found.**

Found event list (2019 Aug.)

	KEK-PS E373	J-PARC E07
Ξ^{-} stop with nuclear fragment	430	1.8k
S=-2 system	9	30

28

Double Λ event (D004)

- Possible candidates are 3 listed above.
- The uncertainties of $B_{\Lambda\Lambda}$ of these candidate modes are large (more than 1 MeV)
- Anyway, something $_{\Lambda\Lambda}C$ was produced.

Nuclides of found double Λ hypernuclei

			Ca	aptured	l by	Daughter					
			¹² C	¹⁴ N	¹⁶ O	н	Не	Li	Ве	В	С
	Danysz								•		
	E176#15-	03-37		\bullet							
F373	NAGARA		\bullet				•			A consister	it solution w
2070	MIKAGE		0	0			0		0		
-	DEMACHI	-YANAGI	0	0					0	0	
	HIDA			0	0				0		
	Other 3 e	vents									
ſ	D001		0	0				0	0		
	D002		0	0	0				0	0	0
	D003				$\bullet Pr$	elir	ni				\bullet
	D004				•		קווי	arv			
E07	D005				\bullet			Y Y			
	D006			0	0					0	0
	D007, MI	NO			\bullet				•		
	D008										
	D009		0	0				0	0		
	D010										
	D011	- To be reported	soon								
	D012										

•: Uniquely identified, O: Multiple interpretations

• Statistical analysis with multiple events will provides information on $\Lambda\Lambda$ and ΞN interactions.

Nuclides of found twin single Λ events

			Ca	ptured	by	Daughter					
			¹² C	¹⁴ N	¹⁶ O	Н	Не	Li	Ве	В	C
	E176#10-9	-6	•			1			1		
	E176#13-1	1-14	•			1			1		
	E176#14-0	3-35		0	0						
E272	run429_sp	ill438_1		•			3				
L3/3	KISO			•			1		1		
	KINKA			•			1		1		
	T001										
	T002			\bullet	h	rol	1		1		
F07	T003			0	OM	1611	Mir				
207	T004, aton	nic			•		1	larv		1	
	T005							Y Y			
_	T006, IBUKI			lacksquare			1		1		
	T007										
	T008										
	T009 To be reported		soon								
	T010										
	T011										

•: Uniquely identified, O: Multiple interpretations

• Statistical analysis with multiple events will provides information on $\Lambda\Lambda$ and ΞN interactions.

J-PARC E07 makes a breakthrough in the study of S=-2 system.

New nuclide events and $B_{\Lambda\Lambda}$ and B_{Ξ} are being accumulated by event-by-event analysis.

"MINO event" ($_{\Lambda\Lambda}$ Be): Prog. Theor. Exp. Phys. 2019, 021D02. "IBUKI event" ($_{\Xi}$ ¹⁵C): Under preparation for publicaton

Statistical analysis of double strangeness system is started.

Event hunting is ongoing.

We will detect additional several tens events within a year.

"X-ray measurement from Ξ^- atoms" is ongoing.

X-ray measurement from Ξ^- atom with Hybrid method combined Ge detector and emulsion

J-PARC E07 Collaboration

Japan	Gifu University JAEA KEK Kyoto University Nagoya University Osaka University RIKEN Toboku University
Korea	Gyeongsang National University Korea Research Institute of Standards and Science Korea University Seoul National University
China	Chinese Academy of Sciences Institute of High Energy Physics China Shanxi Normal University
Germany	Helmholtz Institute Mainz Johannes Gutenberg-Universität
Myanmar	Lashio University University of Yangon
USA	Ohio University University of New Mexico

Back up slides:

Physics motivation and design of the experiment.

Nagara event

H. Takahashi, et.al.: Phys. Rev. Lett. 87 (2001) 212502. J. K. Ahn, et.al.: Phys. Rev. C 88 (2013) 014003.

 $\Lambda\Lambda$ interaction is weekly attractive

 $\Delta B_{\Lambda\Lambda}$ = 0.67 +- 0.17 MeV Where, B₌ = 0.13 MeV

Kiso Event: *PTEP*. (2015) 033D02.

	KEK-PS E373	J-PARC E07 (in proposal)
Emulsion gel	0.8 tons	2.1 tons
Purity of K ⁻ beam	25%	~85%
Ξ^- stop yield	~650	10k
S=-2 hypernuclei	9	~10 ²

Physics motivations

$\Lambda\Lambda$ - ΞN coupling effect

 $\Lambda\Lambda$ - ΞN coupling effect is small in ${}^{6}_{\Lambda\Lambda}$ He and the p-shell double Λ hypernuclei

•I.R. Afnan and B.F. Gibson, Phys. Rev. C67, 017001 (2003).

•Khin Swe Myint, S. Shinmura and Y. Akaishi, nucl-th/029090.

•T. Yamada and C. Nakamoto, Phys. Rev.C62, 034319 (2000).

If the strength of $\Lambda\Lambda$ - ΞN coupling is enough large, ${}^{4}_{\Lambda\Lambda}$ H can be bound.

Comparison between our and other emulsion experiments

J. Yoshida et al., N. I. M. A 847 (2017) 86–92

Long walk to J-PARC E07

- 2001 Emulsion experiment BNL E964 was accepted
- 2006 E964 was cancelled
- 2007 J-PARC E07 was accepted
- 2011 Earthquake
- 2013 Radiation leak accident
- 2016 1st physics run
- 2017 2nd physics run

successfully completed

2012-Emulsion facility in Gifu-Univ.

2013-2014 Emulsion sheet making

2014-2017 Storage in Kamioka mine 2016-2017 Refreshing

Back up slides:

Event hunting in photographic emulsion sheet

 Ξ^{-} selection from the (K-, K+) reaction by off-line analysis

Criteria	for	Ξ	track	se	lection

by simulation for 118 modules

Leve	el E⁻ stop	prediction	prediction /mod.	
1	9k	52k	~440	High S/N & stop ratio
2	1k	100k	~850	Realistic selection (+ a few year)
3	1k	~0.7M	6.2k	All Ξ⁻ stop
4	negligible	~1.9M	16k	All combination

Tracks in X-Y space (1mm)²

 Ξ - tracking in thick-type sheet

* Tracking with image processing

Automated Track Following (Sample Movie) https://youtu.be/3fiWI5tDx2U

 Ξ - tracking in thick-type sheet

Case2. dizzy track -> stop (~30 tracks/sheet)

Around stop point -> eye-check

Observation of endpoint

Estimation by simulation

Progress of track following

Current event finding efficiency is about 50% The Inefficiency is due to...

* The correction technique is being developed

Back up slides:

Event by event analysis

$$\Xi^{-} + {}^{14}N \rightarrow {}^{10}Be + {}^{5}He$$

The Q-value of this decay mode is the highest among any channel producing "Twin single Λ hypernucleus".

KEK-PS E373 KISO J-PARC E07 IBUKI

A twin single Λ hypernuclear event in mod062 pl11

Possible solution:

$$\Xi^{-} + {}^{16}\text{O} \rightarrow {}^{5}\text{He} + {}^{12}\text{B} (B_{\Xi^{-}} = ~0.1 + -0.1 \text{ MeV})$$

Consistent to atomic bound state, Not a Ξ hypernucleus.

Alpha decay event search by "Vertex-picker"

Back up slides:

X-ray measurement from Xi atoms by Ge detector

First measurement of X-ray from Ξ -atoms

- * $10^4 \Xi^-$ -stop events in emulsion sheets, with emulsion analysis.
- * Energy resolution for Ge : 2keV FWHM
- * Statistical accuracy of shift energies : Br(316 keV): 0.4 keV, Ag(370 keV): 0.2 keV
- * BGO suppression (gate 20 ns) ightarrow 30% BG suppress and 100% signal survival ratio

* $P_{\Xi} = 0.6$

Hybrid method : Ge detector and emulsion

60

Criteria for Ξ^{-} track selection

by simulation for 118 modules

Level	Ξ ⁻ stop	prediction/mod.		
1	9k	~440	High S/N & stop ratio	1 st priority
2	1k	~850	Realistic selection	
3	1k	6.2k	All Ξ ⁻ stop	
4	negligible	16k	All combination	

Back up slides:

Emulsion sheet handring

103-2

40 degrees Celsius, 3.1kg

The emulsion facility at Gifu University

Tanks for photographic development

