Amplitude Analysis at JPAC

Adam Szczepaniak, Indiana University/Jefferson Lab

Joint Physics Analysis Center

Joint Physics Analysis Center

- JPAC: theory, phenomenology and analysis tools in support of experimental data from JLab12 and other accelerator laboratories
- Contribute to education of new generation of practitioners in physics of strong interactions : Graduate course on reaction theory

https://jpac.jlab.org

http://www.indiana.edu/~jpac/

IANA UNIVERSITY

Jefferson Lab

Why spectroscopy : Stranger Things of Hadrons

INDIANA UNIVERSITY

Jefferson Lab

small world (10⁻¹⁵m) of fast (v~c) particles exerting ~1T forces !!!

Are constituent quarks real ?
 → how is mass generated
 What about gluons ?
 → confinement vs Higgs behavior

The dual role of gluons

provide confinement \rightarrow color flux tubes

are confined \rightarrow constituent gluons

Jefferson Lab

INDIANA UNIVERSITY

Hybrid mesons,: evidence for constituent gluons ?

It is necessary to fix physical gauge (e.g. Coulomb)

Plenty of signatures: hybrids

- Exotic J^{PC}=1⁻⁺ (hybrid) mesons expected (VES, GAMS,E852, COMPASS, and theory)
- In low-t pion diffraction (COMPASS) exotic wave production compatible with one pion exchange (but not at high-t)
- In photoproduction (GlueX,CLAS12) exotic mesons produced via pion exchange (both good and bad)

INDIANA UNIVERSITY

Glueball candidates on the horizon

J/ψ annihilates into gluons

Experimental results from J/ψ radiative decays to scalars or tensors:

- $\succ \mathrm{B}(\mathrm{J}/\psi \rightarrow \gamma \mathrm{f}_{0}(1710) \rightarrow \gamma K \overline{K}) = (8.5^{+1.2}_{-0.9}) \times 10^{-4}$
- $\succ B(J/\psi \rightarrow \gamma f_0(1710) \rightarrow \gamma \pi \pi) = (4.0 \pm 1.0) \times 10^{-4}$
- ≻B(J/ ψ → $\gamma f_0(1710)$ → $\gamma \omega \omega$)=(3.1±1.0)× 10⁻⁴
- ≻B(J/ψ → γf₀(1710) → γηη)=($2.35^{+0.13+1.24}_{-0.11-0.74}$)× 10⁻⁴
- \Rightarrow B(J/ $\psi \rightarrow \gamma f_0(1710)$) > 1.7× 10⁻³

 $\geq B(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta) = (5.60^{+0.62}_{-0.65} + 2.37_{-2.07}) \times 10^{-5}$ $\geq B(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \phi \phi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-4}$

 $\geq B(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma K_s^{\ 0}K_s^{\ 0}) = (5.54^{+0.34}_{-0.40} + 3.28_{-1.49}) \times 10^{-5}$

 $f_0(1710) / f_2(2340)$: candidates of the scalar/ tensor glueballs ?

Chang-Zheng Yuan (from Lattice 2019), Beijiang Liu (HADRON 2019)

Its all complex calculus : amplitudes vs data

In practice: bottom - top approach

 Reconstruct amplitudes from its singularities (poles, cuts) Recall that each singularity has its own physical interpretation (open channels, aka particle loops do NOT generate resonances, they generate widths)

• Use data to determine best hypothesis

 Test how singularities depend on parameters (channel couplings, thresholds, etc.) to infer their microscopic origins.

Spectroscopy from peripheral production

- <complex-block>
- Need to establish factorization between beam and target fragmentation (Regge factorization)
- Single Regge pole exchange dominate over cut other singularities (cuts, daughters)

Global Regge analysis

 Test Regge pole hypothesis and estimate corrections (daughters, cuts)

Factorizable Regge pole exchange

$$\mathcal{R}(s,t) \equiv \left(\frac{1-z_s}{2}\frac{\nu}{-t}\right)^{\frac{1}{2}|\mu-\mu'|} \left(\frac{1+z_s}{2}\right)^{\frac{1}{2}|\mu+\mu'|}$$

$$A_{\mu_{4}\mu_{3}\mu_{2}\mu_{1}} = \mathcal{R}(s,t)\sqrt{-t}^{|\mu_{1}-\mu_{3}|}\sqrt{-t}^{|\mu_{2}-\mu_{4}|} \hat{\beta}_{\mu_{1}\mu_{3}}^{e13}(t)\hat{\beta}_{\mu_{2}\mu_{4}}^{e24}(t)\mathcal{F}_{e}(s,t)$$
$$\mathcal{F}_{e}(s,t) = -\frac{\zeta_{e}\pi\alpha_{e}^{1}}{\Gamma(\alpha_{e}(t)-l_{e}+1)}\frac{1+\zeta_{e}e^{-i\pi\alpha_{e}(t)}}{2\sin\pi\alpha_{e}(t)}\left(\frac{s}{s_{0}}\right)^{\alpha_{e}(t)}$$

• N_{Data}=1271, N_{par}=9

(6 SU(3) couplings, 1 mixing angle, 2 exp. slopes)

 $\mathcal{F}_e(s,t) \xrightarrow[t \to m_e^2]{} \frac{(s/s_0)^{J_e}}{m_e^2 - t}$

Global Regge pole analysis

Jefferson Lab

INDIANA UNIVERSITY

Finite Energy Sum Rules

Finite Energy Sum Rules

[V. Mathieu, J.Nys. et al. (JPAC) 1708.07779 (2017)]

Combine energy regimes

INDIANA UNIVERSITY

• Low-energy model ((SAID, MAID, Bonn-Gatchina, Julich-Bonn,...)

Jefferson Lab

• Predict high-energy observables

Two applications

- Understand high-energy dynamics
- Constraining low-energy models

Constraining the resonance spectrum

[J.Nys et al., PRD95 (2017) 034014] $\rho + \omega$ b + h $\rho + \omega$ 1.4 η -MAID A_1 A_2 BoGn 1.2 A_4 Im v A^p₄ (GeV⁻²) Im v A₁^p (GeV⁻¹) Im *v* A^{'p}₂ (GeV⁻¹) JuBo $t = 0. \text{ GeV}^2$ 1.0 1.0 ANL-O 0.8 Regge 0.8 0.6 0.6 0 0.4 0.4 0.2 0.2 0.0 0.0 1.8 1.6 2.0 2.2 2.4 2.2 2.0 2.2 2.4 1.6 1.8 2.0 2.4 1.6 1.8 W (GeV) W (GeV) W (GeV) 0.50 $\gamma p \rightarrow \eta p$ 0.30 Ambiguities in the low-energy model (η -MAID) 0.20 Mismatch with high-energy data \rightarrow

Possibilities

76

- Low-energy model inconsistent
- Cut-off not high enough
 - High mass resonances!

Beam asymmetry: measurement of the exchange process

- Global fits indicate weak unnatural exchanges
- Possible tension between GlueX and SLAC data ?

n/n' asymmetry probes coupling to strangness

V.Mathieu et al. (JPAC) Phys. Lett. B774, 362 (2017)

$\pi\Delta$ photoproduction

Comparison to GlueX data

- Confirmation of interference pattern
- High -t: natural, low -t: unnatural
- Mismatch: oddly behaved π exchange
 - Ongoing analysis

INDIANA UNIVERSITY

• Experimental or theoretical?

Jefferson Lab

- Stringent test of onepion-exchnage production
- Possible to make parameter-free predictions

J.Nys et al. (JPAC) Phys.Lett. B779, 77 (2018)

 $s_{\pi p} \leq 2 \,\,\mathrm{GeV}$

Łukasz Bibrzycki et al. (Cracow, JPAC)

OPE vs other exchanges

account one produces a dip the other a pick at a resonance mass

Bibrzycki,Bydzovsky,Kaminski,AS (2018)

Moment analysis

Beam asymmetry

Jefferson Lab INDIANA UNIVERSITY

3-to-3 particle scattering

Amplitudes can be reconstructed from unitarily (analyticity) The problem is how to implement unitary in mupltipartilce reactions

$$A(s,t) \to A_l(t)$$

• 2-to-2 partial waves diagonalize unitarity

$$A_l(s) = K^{-1}(s) - i\rho(s)$$

- K-matrix = infinite volume solution to unitarity
- Luscher (quantization condition) = finite volume solution to unitarity

$$A(s, s_{12}, t_{12'}, \cdots) \rightarrow A^J_{\Lambda, \Lambda'}(s_{12}, s, s_{1'2'})$$

- Helicity partial waves represent (quasi) two-body isobar/dimer spectator
- Difference in various approaches has to do with how the K-matrix is introduced (symmetrization)
- JPAC : Proof of equivalence (on the real axis)

A.Jackura et al., Phys.Rev. D100 (2019), 034508

Resonance parameter determination

$$a_2(1700)$$

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

a2(1700) MASS

VALUE (MeV) 1705±40 OUR		EVTS DOCUMENT ID		TECN		COMMENT	
	$1722 \pm 15 \pm 67$		¹ RODAS	19	JPAC	191 $\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$	
	1698 ± 44		² AMSLER	02	CBAR	$0.9 \overline{p} p \rightarrow \pi^0 \eta \eta$	
•	 We do not ι 	use the fo	ollowing data for ave	erages	, fits, lin	nits, etc. • • •	
	1681^{+22}_{-35}	46M	^{3,4} AGHASYAN	18 B	COMP	190 $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$	
	$1720\!\pm\!10\!\pm\!60$		⁵ JACKURA	18	JPAC	$\pi^- p \rightarrow \eta \pi^- p$	
	$1726 \!\pm\! 12 \!\pm\! 25$		⁴ ABLIKIM	17K	BES3	$\psi(2S) \rightarrow \gamma \eta \pi^+ \pi^-$	

 $I^{G}(J^{PC}) = 1^{-}(1^{-+})$

π_1 (1600) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$1660^+_{-11} 0 UR$	AVERAGE	Error includes so	cale fa	actor of 2	1.2.
$1564\pm 24\pm 86$		¹ RODAS	19	JPAC	191 $\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$
$1600 {+} {110 \atop - 60}$	46M	² AGHASYAN	18 B	COMP	$190 \pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

 $I^{G}(J^{PC}) = 1^{-}(2^{++})$

a2(1320) MASS

VALUE (MeV)		DOCUMENT	DOCUMENT ID					
1316.9±0.9 OUR AVERAGE Includes data from the 4 datablocks that follow this one. Error includes scale factor of 1.9. See the ideogram below.								
$\eta\pi$ MODE								
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT			
The data in this	s block is ind	cluded in the average	printed for	a prev	vious datablock.			

$1312.2\pm$	2.8 OUR AVERAGE	Error includes	scale	factor of 2.6.	See the ideogram below.
$1306.0\pm$	0.8 ± 1.3	¹ RODAS	19	JPAC	191 $\pi^- p \rightarrow \eta^{(\prime)} \pi^- p$
1308 \pm	9	BARBERIS	00н		450 $pp \rightarrow p_f \eta \pi^0 p_s$

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

See also our review under the $a_1(1260)$ in PDG 06, Journal of Physics **G33** 1 (2006).

*a*₁(1260) MASS

VALUE (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT	
1230	±40	OUR ES	STIMATE				_
1 299	+12 -28		46M	¹ AGHASYAN	18 B	COMP	190 $\pi^- p \rightarrow$
• • • •	We do n	ot use th	e following	data for averages	fite	limite e	$\pi^-\pi^+\pi^-p$
	we uo n	or use the	e ionowing	uala ioi averages	, mus,	mmus, e	
1195.0	$5\pm$ 1.05	$5\pm$ 6.33	894k	AAIJ	18AI	LHCB	$D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$
1209	± 4	$^{+12}_{-9}$		² MIKHASENKO	18	RVUE	$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$
1225	± 9	± 20	7k	³ DARGENT	17	RVUE	$D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$

The Review of Particle Physics M. Tanabashi et al. [Particle Data Group], Phys. Rev. **D98**, 030001 (2018) and 2019 update

(Very) exotic physics: constraining Lorentz symmetry violation

• Observer transformations do not affect results.

• Particle transformation, e.g. rotation of the experiment in the background filed produces a physical effect.

- There is a well defined SME $\mathcal{L}_{SME} = \mathcal{L}_{Gravity} + \mathcal{L}_{SM} + \mathcal{L}_{LV} e.g (D.Colladay & V.A. Kostelecky, PRD55, 6760 (1997); PRD58, 1166002 (1998); PRD69, 105009 (2004))$
- Only a few constraints in the quark sector : use DIS, SDIS, Drell-Yan, ...

- The first estimate on the sidereal time dependent coefficients c_f were obtained using HERA data: O(10⁻⁵) (V.A.Kostelecky, E.Lunghi, A.Vieira, PLB729, 272 (2017))
- Sensitivity studies for EIC are under way: N.Sherrill, A.Accardi, E.Lunghi.

JPAC 2019

Jefferson Lab Michael Döring¹ Victor Mokeev Emilie Passemar² Adam Szczepaniak² Miguel Albaladejo

California State U Service Peng Guo

Pedagogical U Kraków 🛏

Lukasz Bibrzycki

INP Kraków 🛏

Robert Kaminski

U of Adelaide 🜌

Robert Perry

Indiana U Geoffrey Fox Tim Londergan Nathan Sherrill Daniel Winney Sebastian Dawid

CERN 🗖 🛱 Misha Mikhasenko

UCM 🖾 Vincent Mathieu Arkaitz Rodas

ECT*
Alessandro Pilloni

Jefferson Lab

George Washington U

Ron Workman

Old Dominion U

Andrew Jackura

UNAM INCLASSING Cesar Fernández-Ramírez Jorge Silva Castro INFN Genoa INFN Genoa

JGU-Mainz U 🛤

Astrid Hiller-Blin Igor Danilkin

BaBar, Belle, BES, KLOE, LHCb

Faculty / Staff Postdoc PhD student ¹JLab/GWU funded ²JLab/IU funded

Experimental collaborations: GlueX, CLAS12, COMPASS, MAMI,

a₁(1260)

Quasi-two-body approximation

INDIANA UNIVERSITY

A. Jackura — Indiana University

M. Mikhasenko et al. [JPAC], Phys. Rev. D98, 096021 (2018)

26