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Outline

• What is light-front and why?
– Relativistic bound states

• Basis Light-front Quantization
– Many body
– Rotational symmetry

• Applications:
– QED: physical electron, positronium
– QCD: nucleon, light meson, heavy quarkonium
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Two Sides of Nuclear Physics
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What holds hadron together – the glue? 

!  Understanding the glue that binds us all – the Next QCD Frontier! 

!  Gluons are wired particles!  

" Massless, yet, responsible for nearly all visible mass 

Bhagwat & Tandy/Roberts et al 

“Mass without mass!” 
Nucleons & mesons Quarks & gluons

Mass scale ∼	GeV Mass scale ∼ MeV

Low Energy High Energy

𝜋

Need frame-independent wave functions



Light-front Time
• We measure nucleon structure by virtual photon

• We "see” the world at fixed light-front time (𝑡 = 𝑥' + 𝑥() 

5



equal-time dynamics         vs             light-front dynamics 

Light-front vs Equal-time Quantization
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i ∂
∂x+

ϕ(x+ ) = 1
2
P− ϕ(x+ )i ∂

∂t
ϕ(t) = H ϕ(t)

2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a
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[Dirac 1949]

H = P0 P− = P0 − P3

t ≡ x0 t ≡ x+ = x0 + x3

𝑃*, 𝑃+, 𝐸* , 𝐸+, 𝐽/𝑃, 𝐽

v.s.

Kinematic generators:



Why Go To Light-front?

• Boost invariant light-front wave functions
• Simple vacuum = free theory vacuum + zero modes
• Hamiltonian formalism for relativistic systems
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⟩|proton = 𝑎 ⟩|𝑢𝑢𝑑 + 𝑏 ⟩|𝑢𝑢𝑑𝑔 + c ⟩|𝑢𝑢𝑑𝑔𝑔 + 𝑑 ⟩|𝑢𝑢𝑑𝑞@𝑞 +. . . .

⟩|pion = 𝑎 ⟩|𝑞@𝑞 + 𝑏 ⟩|𝑞@𝑞𝑔 + c ⟩|𝑞@𝑞𝑔𝑔 + 𝑑 ⟩|𝑞@𝑞𝑞@𝑞 +. . . .

. . . .



Basis Light-Front Quantization

• Eigenvalue problem for Light-front Hamiltonian

-𝑃B : light-front Hamiltonian
-𝑃CB : eigenvalue hadron mass spectrum
- | ⟩𝛽 : eigenvector light-front wave function 

• Observables

[Vary et al., 2008]

O ≡ ⟨𝛽′| I𝑂|𝛽⟩
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Non-perturbative𝑃B 𝛽 = 𝑃C
B|𝛽⟩



Basis Construction
1. Fock-space expansion:

e.g.

2. For each Fock particle: 
• Transverse: 2D harmonic oscillator basis:ΦL,M

N (𝑝⃗*)
labeled by radial (angular)  quantum number n (m); scale parameter b

e.g., n=4

• Longitudinal: plane-wave basis, labeled by k
• Helicity: labeled by 𝜆

e.g.                         with                                    and 9eγ = e ⊗ γ e = {ne,me,ke,λ e} γ = {nγ ,mγ ,kγ ,λγ }

⟩|𝐏𝐬 = 𝑎 ⟩|𝑒𝑒̅ + 𝑏 ⟩|𝑒𝑒̅𝛾 + 𝑐 ⟩|𝛾 + 𝑑 ⟩|𝑒𝑒̅𝑒𝑒̅ +. . . .

Y|𝒆𝒑 = 𝑎 ⟩|𝑒 + 𝑏 ⟩|𝑒𝛾 + c ⟩|𝑒𝑒𝑒̅ + 𝑑 ⟩|𝑒𝑒𝑒̅𝛾 +. . . .

m=1 m=2m=0



Basis Truncation Scheme

• Symmetries of Hamiltonian:

• Further truncation:

- Fock-sector truncation

- Net fermion number:

- Total angular momentum projection: 

- Longitudinal momentum:

- Discretization in longitudinal direction

2ni+ |mi | +1[ ]≤ Nmax
i
∑- “Nmax” truncation in transverse directions 

n f
i

i
∑ = N f

(mi
i
∑ + si ) = Jz

ki
i
∑ = K

UV cutoff Λ~𝑏 𝑁cde; IR cutoff 𝜆~𝑏/ 𝑁cde

𝑘j =
1, 2, 3….          bosons

0.5, 1.5, 2.5 … fermions



Features of BLFQ

• Basis respects (transverse) rotational symmetry

- Basis states are eigenstates of 𝐽/

• Single-particle basis for many-body system    

- (Anti-)symmetrization of identical particles

• Exact factorization of intrinsic and c.m. motion

- Harmonic oscillator basis with Nmax truncation

• Harmonic oscillator basis suitable for bound states
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Applications to QED

• QED Lagrangian
• Derived Light-front Hamiltonian 
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dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x⌥). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1
4�+�� ,  + ⌘ 1

4���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@+Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@+Aµ +

1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
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i@+
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The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to

15

the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.

kinetic energy terms

vertex 
interaction

instantaneous 
photon 

interaction

instantaneous 
fermion 

interaction

A+ = 0( )
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for employing the 2D HO states as single particle basis
states in the transverse plane.)

We present only that which is necessary in order to
follow our method; more details of the basis states may be
found in Appendix B. We note here that our basis states
depend only on the combination b :=

p
M⌦ (and not on

M and ⌦ individually). This is a free parameter which
must be chosen. Since our goal is to design a basis which
matches as closely as possible the symmetries of the QED
Hamiltonian, we note that there is only one mass scale
in QED, and that is the physical electron mass m. A
sensible choice for our 2D-HO parameter is therefore3

b = m, and we adopt this from here on.
Now, to see why this choice of basis is suited to

light-front problems, we now state how the single par-
ticle quantum numbers {�, k, n, m} relate to the segment
numbers of the states ↵. So, consider a multi-particle
state | ↵ i = ⌦| ↵̄ i, which belongs to a particular segment
and is an eigenvector of J3, P+ and Q with eigenvalues
Mj , K and Nf , respectively. If �l, kl, ml and nf,l are
the quantum numbers for, respectively, the helicity, lon-
gitudinal momentum, longitudinal projection of angular
momentum, and net fermion number of the lth particle
in the state then, summing over particles l, we have

X

l

kl = K ,
X

l

nf,l = Nf , (22)

X

l

ml =: Mt

X

l

�l =: S , (23)

Mj = Mt + S . (24)

(The single particle net fermion number nf is defined 1
for e, -1 for ē and 0 for �.) We see that the basis states
| ↵ i are eigenstates of J3

o and J3
i individually, with eigen-

values Mt and S. Note, though, that it is the sum Mj

which is conserved by the light-front QED Hamiltonian.
While each basis state belongs to one and only one

sector, it is clear that the basis states themselves are
not eigenstates of QED. These must still be constructed
by diagonalizing P�

QED in this basis. For example, the
physical electron eigenstate |ephysi can be expanded as,

| ephys i =
X

↵

| ↵ ih ↵ | ephysi . (25)

in which both the eigenstate on the left and the basis
states on the right all belong to the same segment. Di-
agonalizing the Hamiltonian in our basis would yield the
coe�cients h ↵ | physi, and hence the physical states. In

3 In Fock sectors with n particles the e↵ective 2D-HO parame-
ter for the center-of-mass motion is bcmn =

p
nM⌦ = b

p
n, i.e.,p

n times of that for single-particle states. Thus, in order to
match the center-of-mass motion across di↵erent sectors as re-
quired by QED vertices, we adopt sector-dependent 2D-HO pa-
rameters bn = b/

p
n for Fock sectors with n particles, where

b = me is the 2D-HO parameter in the one particle sector.

order to do this, though we need to be able to implement
our basis numerically, which requires some truncation.
We turn to this now.

B. Basis reduction

Since a quantum field theory contains an infinite num-
ber of degrees of freedom, reduction of the basis space is
necessary in order for numerical calculations to be feasi-
ble. For us, this reduction takes place both in the basis
used and in Fock space.

The first type of reduction is called “pruning”, in which
we exclude basis states which are not needed for desired
observables. The pruning process is lossless, in that it
does not lead to loss of accuracy in the desired observ-
ables. For example, in bound state problems, one is
typically interested in states with definite Nf and Mj .
Combining this with the longitudinal boost invariance in-
herent to light-front dynamics, one can choose K based
on the desired “resolution” for the longitudinal momen-
tum partition among the basis particles [[Refs]]. Thus,
one only needs to work in a single segment of the QED
eigenspace, neglecting the others, without loss of infor-
mation. From here on we write “BLFQ basis” to mean
the basis of a single segment.

Pruning alone is not enough to reduce the basis space
to finite dimension, however, since even a single segment
contains an infinite number of degrees of freedom. To
further reduce the basis dimensionality we need to per-
form basis truncation, which unavoidably causes loss of
accuracy in calculating observables. Basis truncation is
implemented at two levels.

i) Fock-sector truncation. Consider the physical elec-
tron state. This has components in all Fock-sectors with
Nf = 1, which we write schematically as

|ephysi = a|ei + b|e�i + c|e��i + d|eeēi + . . . . (26)

Included in this series are, for example, the bare elec-
tron | e i and its photon-cloud dressing, | e� i, | e�� i etc.
Together, the bare fermion and its cloud of virtual par-
ticles comprise the observable, gauge invariant electron,
as originally described by Dirac [36, 37].

We implement basis truncation by assuming that
higher Fock-sectors give (with an appropriate renormal-
ization procedure implemented) decreasing contributions
for the low-lying eigenstates in which we are mostly inter-
ested. (One motivation for this is the success of pertur-
bation theory in QED). In this first paper, we make the
simplest possible nontrivial truncation, which is to trun-
cate our Fock-sectors to | e i and | e� i. Thus, in this trun-
cated basis, the physical electron state would be given by
only the first two terms of (26). This is enough to calcu-
late physical wavefunctions accurate up to the first-order
of the electromagnetic coupling ↵.

ii) Truncation within Fock-sectors. Fock-sector trun-
cation is still not enough to reducing the basis to finite
dimension; each Fock particle has an infinite number of

𝑷+

Δ*

𝒃*
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Figure 2: (Color online) The (square root of) electron anomalous mag-
netic moment ae (normalized to electron charge e) as a function elec-
tron charge e at selected Nmax = K−1/2. At each Nmax = K−1/2, the
variation is in the fourth significant digit and not visible on the figure.
We use b=M.

contribution from the quantum fluctuation between the
| e ⟩ and | eγ ⟩ sectors and consequently goes to zero in
the infinite basis limit. Our numerical data suggest a
logarithmic divergence in 1/Z2 as a function of the trun-
cation parameters (regulators), see the lower panel of
Fig. 1.

We next note that, due to our current Fock space trun-
cation, Z1 does not obtain the corresponding quantum
fluctuation that would involve the | eγγ ⟩ sector. Hence,
it seems reasonable to associate the origin of the vanish-
ing (naive) anomalous magnetic moment from Eq. (10)
with that of the vanishing renormalization constant Z2.
We therefore propose the following procedure to obtain
the rescaled (“re”) Pauli form factor,

ae = Fre
2 (0) =

F2(0)

Z2
. (12)

After rescaling the Pauli form factor the (rescaled)
anomalous magnetic moment becomes independent of
the coupling constant α (at fixed Nmax = K − 1/2), as
can be seen in Fig. 2, even though the naive results for
the anomalous magnetic moment depend strongly on α
(see Fig. 1). Furthermore, our results for the rescaled
anomalous magnetic moment seem to increase mono-
tonically with increasing Nmax = K − 1/2, and approach
the Schwinger result from below, independent of α.

Next we check the 2D-HO basis parameter b depen-
dence for the rescaled ae in Fig. 3. As Nmax = K in-
creases, the numerical value demonstrates growing b-
independence over an increasingly large interval of b

centered around electron mass M.

In order to test the precision of BLFQ, we extrapolate
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Figure 3: (Color online) The (square root of) electron anomalous mag-
netic moment ae (normalized to electron charge e) as a function of
2D-HO basis parameter b (in the unit of electron mass M). The hor-
izontal dot-dashed line indicates the Schwinger result = 0.1125395.
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Figure 4: (Color online) The (square root of) electron anomalous mag-
netic moment ae (normalized to electron charge e) as a function of ba-
sis truncation parameter Nmax=K−1/2. We use α = 1

137.036 and b=M.
Linear extrapolations use data points with Nmax=K−1/2>150. The
arrow on the left y-axis indicates the Schwinger result = 0.1125395.

the (rescaled) anomalous magnetic moment to the infi-
nite Nmax = K − 1/2 limit in Fig. 4. Here, the BLFQ
results fall into two groups with even and odd Nmax/2,
respectively. This odd-even effect originates from the
oscillatory behavior of the (2D-HO) basis function in
the transverse plane. In Fig. 4, we apply linear ex-
trapolation in 1/

√
Nmax = K − 1/2 to data points with

Nmax=K>150 for the even (odd) Nmax/2 group individ-
ually. The extrapolated ae at infinite Nmax = K−1/2
limit, is 0.112610 (0.112541), agreeing well with the
Schwinger result with a relative deviation of +0.063%
(+0.001%), for the even (odd) Nmax/2 group, respec-
tively.

5

Electron g-2 & GPD E(x, t)
BLFQ vs Perturbation Theory

q1 − iq2
2me

E(x, 0, t = q2 ) = e↑phys (
q) dy−∫ eixP

+y− /2ψ (0)γ +ψ (y) e↓phys (0)
y+ =0,y⊥=0

• Anomalous magnetic moment
• Less than  0.1% deviation  from Schwinger result for
• Largest calculation with basis dim > 28 billion

•

ae = E(x,t→ 0)dx
0

1

∫
ae

X. Zhao, H. Honkanen, P. Maris, J. P. Vary, S. J. Brodsky, Phys. Letts. B737, 65 (2014) 
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(d). For t ! 0, H(x, t ! 0) is the PDF for the dressed
electron. Solid lines represent the perturbative results; data
points are the BLFQ results.

V. RESULTS

Here we present the numerical results from both non-
perturbative (BLFQ) and perturbative methods calcu-
lated with ↵ = 1/137.036 and M = 0.511 MeV. For
the perturbative model, the photon mass m� and the
UV cuto↵ ⇤ are tuned to match with the IR cuto↵
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FIG. 2. (Color online) GPD E(x, t) for di↵erent values of t:
t ! 0 (a), t = �1MeV2 (b), t = �3MeV2 (c), t = �5MeV2

(d). Solid lines represent the perturbative results; data points
are the BLFQ results.

✏ = b/
p

Nmax and the UV cuto↵ b
p

Nmax in BLFQ, i.e.,
we set m� = ✏ = b/

p
Nmax and ⇤ = b

p
Nmax.

In Fig. 1, we have presented the comparison of GPD
H(x, t) = H(x, 0, t) (since we are considering here only
⇣ = 0, we suppress it in the arguments of all GPDs) for
di↵erent values of total momentum transferred t. Note
that for ⇣ = 0, t = �2 = ��2

? is a negative quan-
tity. The GPD H(x, t) reduces to the ordinary parton

0.07

0.08

0.09

0.1

0.001 0.01 0.1 1 10 100

√

a
e
/e

2

electron charge e

Nmax = K−1/2 = 10
Nmax = K−1/2 = 20
Nmax = K−1/2 = 30
Nmax = K−1/2 = 40

Figure 2: (Color online) The (square root of) electron anomalous mag-
netic moment ae (normalized to electron charge e) as a function elec-
tron charge e at selected Nmax = K−1/2. At each Nmax = K−1/2, the
variation is in the fourth significant digit and not visible on the figure.
We use b=M.

contribution from the quantum fluctuation between the
| e ⟩ and | eγ ⟩ sectors and consequently goes to zero in
the infinite basis limit. Our numerical data suggest a
logarithmic divergence in 1/Z2 as a function of the trun-
cation parameters (regulators), see the lower panel of
Fig. 1.

We next note that, due to our current Fock space trun-
cation, Z1 does not obtain the corresponding quantum
fluctuation that would involve the | eγγ ⟩ sector. Hence,
it seems reasonable to associate the origin of the vanish-
ing (naive) anomalous magnetic moment from Eq. (10)
with that of the vanishing renormalization constant Z2.
We therefore propose the following procedure to obtain
the rescaled (“re”) Pauli form factor,

ae = Fre
2 (0) =

F2(0)

Z2
. (12)

After rescaling the Pauli form factor the (rescaled)
anomalous magnetic moment becomes independent of
the coupling constant α (at fixed Nmax = K − 1/2), as
can be seen in Fig. 2, even though the naive results for
the anomalous magnetic moment depend strongly on α
(see Fig. 1). Furthermore, our results for the rescaled
anomalous magnetic moment seem to increase mono-
tonically with increasing Nmax = K − 1/2, and approach
the Schwinger result from below, independent of α.

Next we check the 2D-HO basis parameter b depen-
dence for the rescaled ae in Fig. 3. As Nmax = K in-
creases, the numerical value demonstrates growing b-
independence over an increasingly large interval of b

centered around electron mass M.

In order to test the precision of BLFQ, we extrapolate
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the (rescaled) anomalous magnetic moment to the infi-
nite Nmax = K − 1/2 limit in Fig. 4. Here, the BLFQ
results fall into two groups with even and odd Nmax/2,
respectively. This odd-even effect originates from the
oscillatory behavior of the (2D-HO) basis function in
the transverse plane. In Fig. 4, we apply linear ex-
trapolation in 1/

√
Nmax = K − 1/2 to data points with

Nmax=K>150 for the even (odd) Nmax/2 group individ-
ually. The extrapolated ae at infinite Nmax = K−1/2
limit, is 0.112610 (0.112541), agreeing well with the
Schwinger result with a relative deviation of +0.063%
(+0.001%), for the even (odd) Nmax/2 group, respec-
tively.
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Application to QED (II): Positronium
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e+

e-

γ



[Kaiyu Fu et al, in preparation]

lowest 8 states of Mj=0 : parity and charge conjugation parity agree with hydrogen atom. 

Energy spectrum and wavefunction
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See Kaiyu Fu’s talk
Saturday (17) pm



Photon Distribution In Positronium

• In excited states photons have larger probability at small-x region
• Photon is massless, so peak is at small-x region

[Kaiyu Fu et al, in preparation]
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Application to Heavy Quarkonium
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Hamiltonian

𝑃B = 2𝑔 rs𝑑(𝑥 @𝜓 𝑥 𝛾u𝑇w𝜓 𝑥 𝐴uy
z{|'

𝑃B = 𝑔} rs𝑑(𝑥 @𝜓𝛾+𝑇w𝜓
1

(𝑖𝜕+)}
@𝜓𝛾+𝑇w𝜓

z{|'

2. Vector coupling vertex

3. Vector coupling with instantaneous gluon

𝐻���� + 𝐻��L� = 𝑞⃗*} + 𝜅�𝜉*} +
𝑚�
}

𝑥
+

𝑚@�
}

1 − 𝑥
−

𝜅�

𝑚� + 𝑚@�
} 𝜕z(𝑥(1 − 𝑥)𝜕z)

1. Kinetic Hamiltonian and confining potentials

𝑞�

𝑞}

g

𝑞� 𝑞}

@𝑞( @𝑞�

𝑃B = 𝐻���� + 𝐻��L� + 𝐻����� + 𝐻������
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Energy Spectrum

Kt=11 Nmax=10 Mj=0 me=1.5GeV b=1.64GeV binst=3.2GeV k2l=0.3 k2t=0.1 
OGE : Yang Li,Maris & Vary ,PRD 17 

[Hengfei Zhao, In progress]
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Wave function 
State 𝐽/𝜓(1𝑆)

OGE

BLFQ

OGE; Li, Maris & Vary ,PRD 17 

𝜂�(1𝑆)

[Hengfei Zhao, In progress]
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Wave function 
State

OGE

BLFQ

𝜒�'(1𝑃) 𝜒��(1𝑃)

[Hengfei Zhao, In progress]

OGE; Li, Maris & Vary ,PRD 17 
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Wave function 
stat
e

OGE

BLFQ

ℎ�(1𝑃) 𝜒�}(1𝑃)

[Hengfei Zhao, In progress]

OGE; Li, Maris & Vary ,PRD 17 
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Wave function 
State 𝜓(2𝑆)

OGE

BLFQ

𝜂�(2𝑆)

[Hengfei Zhao, In progress]

OGE; Li, Maris & Vary ,PRD 17 
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Decay constants 
Wave function at the origin – probe short-distance physics LFWF representation
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[Hengfei Zhao, In progress]
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PDA 
Generalized Van Royen-Weisskopf formula:

𝑓�,�
2 2𝑁�

𝜙�,� 𝑥; 𝜇 =
1
4𝜋

 𝜓↑↓∓↓↑
�|' (𝑥, 𝑏* = 0)

OGE; Li, Maris & Vary ,PRD 17 
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Gluon PDF [Hengfei Zhao, In progress]
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Application to Pion
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PDF with QCD Evolution

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

large x:
(1-x)1.44

HLF=

PDF for the valence quark result from the light front wave functions 
obtain by diagonalizing the effective Hamiltonian.

Pion PDF Valence u PDF Kaon/Pion

See Jiangshan Lan’s talk
Sunday (18) pm

See Shaoyang Jia’s talk
Tuesday (20) pm



The moments of pion valence quark PDF:

[Lan, Mondal, Jia, Zhao, Vary, arxiv: 1907.01509]

<x> @4 GeV2 Valence Gluon Sea
BLFQ-NJL 0.489 0.398 0.113

[Aguilar et. al., Pion and Kaon Structure at the Electron-Ion Collider] 0.48(3) 0.41(2) 0.11(2)

PDF with QCD Evolution



Drell-Yan cross section
[S. D. Drell and T.-M. Yan, PRL (1970)]
[McGaughey et al, Drell-Yan experiment FNAL-E-0772, PRD (1994)]

Pt
W

C
W
W

Agree with experimental data (FNAL E615, 326, 444, & CERN NA3, WA-039).
[Lan, Mondal, Jia, Zhao, Vary, arxiv: 1907.01509]

[nCTEQ 2015]



Application to Proton
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Light-Front Hamiltonian

𝑷B = 𝑯𝑲.𝑬. + 𝑯𝒕𝒓𝒂𝒏𝒔 + 𝑯𝒍𝒐𝒏𝒈𝒊 + 𝑯𝑶𝑮𝑬

𝑯𝒕𝒓𝒂𝒏𝒔 ~ 𝜿𝑻𝟒𝒓𝟐

𝑯𝒍𝒐𝒏𝒈𝒊 ~ −µ
𝒊𝒋

𝜿𝑳𝟒𝝏𝒙𝒊 𝒙𝒊𝒙𝒋𝝏𝒙𝒋

𝑯𝑲.𝑬. = µ
𝒊

𝒑𝒊𝟐 +𝒎𝒒
𝟐

𝒑𝒊+

𝑯𝑶𝑮𝑬 = −
𝑪𝑭𝟒𝝅𝜶𝒔
𝑸𝟐 µ

𝒊,𝒋(𝒊Á𝒋)

Â𝒖𝒔𝒊Ä 𝒌𝒊
Æ 𝜸𝝁𝒖𝒔𝒊 𝒌𝒊 Â𝒖𝒔𝒋Ä 𝒌𝒋

Æ 𝜸𝝁𝒖𝒔𝒋(𝒌𝒋)
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Three active-quark approach
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See Siqi Xu’s talk
Tuesday (20) pm
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Sach Form Factor
[Work in progress, C. Mondal, Siqi Xu, et.al ]
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With increasing the 
basis size, the magnetic 
and electric form factors 
approach the 
experiment data

𝐺Î(𝑄}) = ∑� 𝑒�𝐹�
�(𝑄}) − ÒÓ

�ÔÓ ∑� 𝑒�𝐹}
�(𝑄}) ,

𝐺Ô(𝑄}) = ∑� 𝑒�𝐹�
�(𝑄}) + ∑� 𝑒�𝐹}

�(𝑄}). 

Anomalous magnetic moment
Proton : 𝜇Õ = 2.44 (Exp. : 2.79)
Neutron : 𝜇Õ = −1.41 (Exp. : −1.91)

neutron

neutron

proton

proton
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Use the NNLO DGLAP to evolve the PDF. Qualitative behavior is consistent 
with the CTEQ 15 PDF.

Parton Distribution Functions (PDF)
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 [Work in progress, C. Mondal, Siqi Xu, Jiangshan Lan, et.al ]
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Generalized Parton Distribution Functions (GPD)

𝑡 = Δ}, 𝑥 =
𝑘+

𝑃+
, 𝜻 =

𝚫+

𝑷+
= 𝟎

With increasing  momentum transfer 
(𝒕), the peaks of distributions shift to 

larger 𝒙;

[Work in progress, C. Mondal, Siqi Xu, et.al ]
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where

• f is chosen to be the pion decay constant

• g is the coupling constant 2

• ⇡ = (
P

j ⇡
2
j )

1
2

• the direct product of the isospin space and the Dirac spinor space requires U is a 2 ⌦ 4 dimensional

matrix

• it is understood that the trace is taken in the isospin space

• ⌧i for i = 1, 2, 3 denotes Hermite Pauli matrices, which is

• ~⌧ · ~⇡ is Hermite.

The pion fields are introduced by the unitary matrix U for the chiral transformation. U can be chosen

from the forms [1, 2] as

U1 = ei�5~⌧ ·~⇡/f , U2 =
1 + i�5~⌧ · ~⇡/(2f)

1� i�5~⌧ · ~⇡/(2f)
, U3 =

s

1�
⇡2

f2
+ i�5~⌧ · ~⇡/f . (2)

In fact, the choice of Ui corresponds to di↵erent definitions of the fields.

• The pion-nucleon coupling is chosen as that of linear representations of chiral symmetry used in [2], in

which the Lagrangian approximately invariant (m⇡ 6= 0) under chiral transformation

N
0
�! e

i�5~⌧ ·~aN 0
, U �! e

�i�5~⌧ ·~aUe
i�5~⌧ ·~a . (3)

• One may transform the fermion field by taking U
1/2

N
0 as the nucleon field, in which one gets La-

grangians of the nonlinear representation [3].

The pseudovector coupling in Eq. (1), which contains the derivative of the pion fields, causes problems

when computing the constraint equation of the fermion field. Following Ref. [1], we will handle this problem

in a simple fashion.

2 g is taken as its bare value 1 in this note. Note this constant receives corrections after renormalization [1].

2

Relativistic 𝑁𝜋 chiral Lagrangian density 

Chiral model of nucleon and pion

𝑓 = 93 MeV: pion decay constant
𝑀Û = 137 MeV: pion mass
𝑀Õ = 938 MeV: nucleon mass

[Miller, 1997]
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The idea: cloudy-bag model

41

Solve the proton wave function in 
terms of the nucleon and pion

⟩|proton = 𝑎 ⟩|𝑁 + 𝑏 ⟩|𝑁𝜋 + c ⟩|𝑁𝜋𝜋 + 𝑑 ⟩|𝑁 Â𝑁𝑁 +.	.	.	.

⟩|proton = 𝑎 ⟩|𝑢𝑢𝑑 + 𝑏 ⟩|𝑢𝑢𝑑𝑔 + c ⟩|𝑢𝑢𝑑𝑔𝑔 + 𝑑 ⟩|𝑢𝑢𝑑𝑞@𝑞 +.	.	.	.

Step: 1

Step: 2
Attach the fundamental degree of 
freedom: quarks and gluons 

N

π

π



Mass spectrum of the 𝑁𝜋 system

[Du et al., in preparation]

§ Fock sector-dependent renormalization applied
§ Mass counterterm applied to |𝑁⟩ sector only

[Karmanov et al, 2008, 2012] 42

the physical proton 
938 MeV 

𝑁Myz(= 𝐾Myz − 1/2 )



Proton parton distribution function

43

Preliminary

𝑓Û(𝑥Û)



Proton Dirac form factor

Preliminary

Proton Dipole form with constituents’ internal structures



Summary and Outlook

• Nonperturbative approach for relativistic bound states
• Access to (frame-independent) many-body wave functions
• Straightforward to calculate lightcone observables eg. PDFs
• Can be applied to effective/first-principles interactions
• Systematically improvable by including higher Fock sectors

45

• Apply to different systems: excited/exotic hadron states
• Apply to different interactions: NJL, Chiral EFT...
• More observables: GPD, TMD, GTMD…
• Apply to first-principles QCD interactions


