Photoproduction of the S-, P- and D-wave resonances on protons in the π + π - channel

Łukasz Bibrzycki* (Pedagogical University, Cracow / Indiana University, Bloomigton/ Jefferson Laboratory)

Adam Szczepaniak (Indiana University, Bloomington/Jefferson Laboratory)

Petr Bydžovský (Nuclear Physics Institute, Czech Academy of Sciences, Řež)

Robert Kamiński (Institute of Nuclear Physics PAS, Cracow)

Ł.B, P. Bydžovský, R. Kamiński, A.P. Szczepaniak, PLB 789, 287-291 (2019)

*-speaker

Motivation for studying meson resonances in the π + π - photoproduction

- Understanding the spectrum of resonances is directly related to fundamental features of the QCD like the confinement
- Photoproduced meson systems are more likely (than eg. pionproduced) to carry exotic quantum numbers
- Reliable models are badly needed to describe the wealth of the resonance photoproduction data to be expected in near future from JLab (CLAS12 and GlueX), ELSA, MAMI, and SPring-8 experiments
- Polarized photon beams at CLAS12 and GlueX experiments allow for detailed study of production mechanisms by comparing model predictions with polarization asymmetries
- Embedding known information on πp PWA (SAID, MAID, others) in photoproduction analyses
- Immediate objective: describe the CLAS6 data which for a time being is the only observation of the $f_0(980)$ in photoproduction

Kinematics of interest

• We are interested in $\pi\pi p$ final states where:

- Momentum transfer from target to recoil proton is small
- Such kinematics favors the production of resonances in the $\pi\pi$ system

General description of the 3-particle production

The system is described in terms of 5 kinematic variables:

- 3 Lorentz invariants s, $s_{\pi\pi}$, t
- φ, θ angles, which describe the outgoing pions momenta (in their CM system), with the z-axis directed opposite to the recoil proton momentum (helicity system)
- and 3 helicities

Definition of the frame of reference

 \hat{z} is opposite to recoil proton momentum

is perpendicular to

- $\hat{\mathbf{y}}$ production plane
- defined by photon and recoil proton

 $\hat{x}=\hat{y}\times\hat{z}$

We analyze the $\pi\pi$ system with the following properties:

- Total CM energy \sqrt{s} is large in hadronic scale (~10 GeV)
- Effective mass $\sqrt{s_{\pi\pi}}$ is low so that partial wave expansion of the amplitude is valid

$$\mathsf{A}(\mathsf{s},\mathsf{s}_{\pi\pi},\mathsf{t},\theta,\varphi) = \sum_{\mathsf{I}=\mathsf{0}}^{\mathsf{I}_{\mathsf{max}}} \sum_{\mathsf{m}=-\mathsf{I}}^{\mathsf{I}} \mathsf{a}_{\mathsf{m}}^{\mathsf{I}}(\mathsf{s},\mathsf{s}_{\pi\pi},\mathsf{t})\mathsf{Y}_{\mathsf{m}}^{\mathsf{I}}(\theta,\varphi)$$

- For any given partial wave, we can think about the reaction as of the quasi $2 \rightarrow 2$ scattering
- For fixed *s*, *t*, λ , λ' , λ_m we can treat the partial wave amplitude as a function of one parameter only, ie. $a_{lm}(s, s_{\pi\pi}, t) = a(s_{\pi\pi})$

- 1. Right hand cut of $a(s_{\pi\pi})$ is determined by unitarity (we neglect coupled channels)
- 2. Nearest left hand cut is due to one pion exchange and can be calculated explicitly Deck amplitude
- 3. Far away singularities cannot be computed explicitly but can be reliably parameterized, eg. by low degree polynomials in $s_{\pi\pi}$

Diffuse vs compact production source

t-channel exchange propagator	Fourier transform of propagator
$1/(t_1-m^2)$	$\sim rac{\mathrm{e}^{-\mathrm{mr}}}{\mathrm{r}}$

• Photoproduction of a meson pair through the exchange of:

- Light particle (or near singularity) <==>diffuse production region
- Heavy particle (or distant singularity)<==>compact production region
- General form of the amplitude compatible with unitarity (Aitchinson, Bowler 1978) :

$$\begin{split} & M = M_{\text{diffuse}} e^{i\delta_{\pi\pi}} \cos \delta_{\pi\pi} + \mathsf{M}_{\text{compact}} e^{i\delta_{\pi\pi}} \sin \delta_{\pi\pi} \\ & \text{where:} \\ & \mathsf{M}_{\text{diffuse}} - \text{one pion exchange (Deck) amplitude component} \\ & \mathsf{M}_{\text{compact}} - \text{compact source component parameterized as:} \\ & \mathsf{M}_{\text{compact}} = A + B \ s_{\pi\pi} \\ & \mathsf{Hadron 2019, Guilin, China} \end{split}$$

Generalization of the Deck amplitude

In early versions of the Deck model the πp interaction was assumed to be diffractive

Real experiments, however, cover both diffractive and resonant regimes of πp scattering

Generalization of the Deck amplitude

... so we generalized the Deck amplitude by using SAID partial wave amplitudes which cover both the resonant and diffractive regions up to πp energy of 2.8 GeV

Part of the amplitude dominated by the nearest left hand cut singularity – pion exchange

SAID parametrization of the elastic $~\pi {\rm p} \rightarrow \pi {\rm p}$ amplitude

Important: Such Deck amplitude is basically parameter free !

Rescattering efects or meson resonances produced in the final state

ππ FSI parametrized using dispersion amplitudes by Bydzovsky et al.(Phys.Rev. D94 (2016) 11601)

πp diffraction *and* I=1/2 and I=3/2 baryon resonances N* and Δ are encoded in SAID amplitudes

$\pi p \to \pi p$ amplitude – partial wave expansion

• General form of the πp scattering amplitude (Chew, Goldberger, Low, Nambu (1957)) $\mathcal{T}_{\alpha\beta} = \overline{u}(p_2)(A_{\alpha\beta} + \gamma \cdot QB_{\alpha\beta})u(p_1)$

Where

re:
$$Q = \frac{1}{2}(q - k_1 + k_2)$$
 and $\frac{A}{4\pi} = \frac{W + m}{E + m}f_1 - \frac{W - m}{E - m}f_2,$
 $\frac{B}{4\pi} = \frac{f_1}{E + m} + \frac{f_2}{E + m}.$

Then the f_1 and f_2 functions are partial wave expanded (separately for I=1/2 and I=3/2):

$$f_{1} = \sum_{l=0}^{\infty} f_{l+} P'_{l+1}(\cos \theta^{*}) - \sum_{l=2}^{\infty} f_{l-} P'_{l-1}(\cos \theta^{*}),$$

$$f_{2} = \sum_{l=1}^{\infty} (f_{l-} - f_{l+}) P'_{l}(\cos \theta^{*}),$$

 $f_{I_{-}}$ and $f_{I_{+}}$ are the functions parameterized by SAID as functions of $s_{\pi\rho}$.

Translating diagrams into amplitude structure

Initial state amplitude (Deck type amplitude)

$$A_{\pi\pi} = M_{\pi\pi} + \langle \pi\pi | \hat{t}_{FSI} | m'n' \rangle G_{m'n'}(\kappa') M_{m'n'}$$

or in the explicit, partial wave projected form

$$\mathcal{T}_{\pi^{+}\pi^{-}}^{lm}(\lambda_{2} \lambda \lambda_{1}) = \begin{bmatrix} 1 + i\rho t_{l}^{1} \end{bmatrix} \mathcal{M}_{\pi^{+}\pi^{-}}^{lm}(\lambda_{2} \lambda \lambda_{1}) \qquad \text{-even partial waves}$$
$$\mathcal{T}_{\pi^{+}\pi^{-}}^{lm}(\lambda_{2} \lambda \lambda_{1}) = \begin{bmatrix} 1 + i\rho t_{l}^{1} \end{bmatrix} \mathcal{M}_{\pi^{+}\pi^{-}}^{lm}(\lambda_{2} \lambda \lambda_{1}), \qquad \text{-odd partial waves}$$

$$\mathcal{T}_{\pi^+\pi^-}^{lm}(\lambda_2\,\lambda\,\lambda_1) = \begin{bmatrix} 1 + i\rho\,t_l^1 \end{bmatrix} \mathcal{M}_{\pi^+\pi^-}^{lm}(\lambda_2\,\lambda\,\lambda_1). \quad \text{-odd partial waters}$$

where:

 $T^{lm}_{\pi+\pi-}$ – partial wave projected photoproduction amplitude of the meson pair $\pi\pi$, $M^{lm}_{\pi\pi}$ - partial wave projected Deck amplitude,

 t'_{I} -rescattering amplitude for isospin I and spin I.

Hadron 2019, Guilin, China

Implementing the e-m current conservation in the Deck amplitude

General form of the amplitude [Pumplin 1970]

$$\mathcal{M}_{\lambda_{2}\lambda_{1}} = \frac{-1}{\sqrt{4\pi}} \left\{ e\varepsilon \cdot \left[\frac{\hat{\kappa}}{|q|} \frac{1}{x + \hat{q} \cdot \hat{\kappa}} + \frac{p_{1} + p_{2}}{q \cdot (p_{1} + p_{2})} \right] T^{+}_{\lambda_{2}\lambda_{1}} + e\varepsilon \cdot \left[\frac{\hat{\kappa}}{|q|} \frac{1}{x - \hat{q} \cdot \hat{\kappa}} - \frac{p_{1} + p_{2}}{q \cdot (p_{1} + p_{2})} \right] T^{-}_{\lambda_{2}\lambda_{1}} \right\}$$

• The amplitude is gauge invariant

Resonances in the $\pi\pi$ partial waves

Mass distributions

S-wave

Notes:

- Very good distribution description already at the level of Deck amplitudes
- Clear $f_0(980)$ resonance contribution
- Sizable contribution from the contact term
- Drell+FSI interference is destructive and the theoretical distribution is too small
- Inclusion of the short range component with parameters A=-15 GeV⁻¹ and B=3 GeV⁻³ makes the overall fit satisfactory
- Indication of the influence of the coupled $K\overline{K}$ channel above 1 GeV

P-wave

Notes:

- Very good overall fit to the ρ(770) line
- Deck overshoots the data for masses above 1 GeV but destructive interference with short range component makes the fit better
- Deck+FSI results in minimum rather than maximum at resonance mass
- Fit of the short range component results in good resonance description with parameters: A=49 GeV⁻¹ and B=-24

GeV-3

Notes:

- Proper magnitude of
- Deck+FSI results in
- Fit of the short range component results in good resonance description with parameters: A=-24 GeV-1 and B=11 GeV-3

- No indication of the influence of the coupled $K\overline{K}$ channel quite understandable, $f_2(1270)$ decays to KK only in <5% (84% to $\pi\pi$)
- No additional background needed to describe the data •

Hierarchy of the compact component magnitudes

Small short range contribution - "diffuse source"

Wave	A [GeV ⁻¹]	B [GeV ⁻³]
S	-15±1	3±1
Ρ	49±2	-24±2
D	-24±11	10±7

Large short range contribution - "compact source"

Summary:

- The model which combines diffuse source (Deck) and compact source components properly describes the $\pi\pi$ mass distributions at fixed *t* in *S*-,*P* and *D* partial waves and reproduces the dominance of the f₀(980), ρ (770) and f₂(1270) respectively while respecting the 2-particle unitarity in the $\pi\pi$ system,
- The relative contribution of the compact source component is large for the $\rho(770)$ and $f_2(1270)$ in line with the $q\bar{q}$ nature of these resonances,
- The S-wave amplitude is dominated by the diffuse source component, which implies that $f_0(980)$ is a more loosely bound $qq\overline{qq}$ object.

Work in progress...

- Include the *t* dependence of the short range part of the amplitude to be able to predict the $d\sigma/dt$ cross sections
- Short range part should be dominated by the double vector exchange
- So, diagrams to be included in the "Born" amplitude are:

Thank you for your attention