Three body open flavor decays of higher vector charmonium and bottomonium

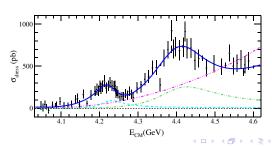
Xin-Zhen Weng (PKU)

Collaborator: L. Y. Xiao, W. Z. Deng, X. L. Chen, S. L. Zhu
Based on Phys. Rev. D 99, 094001 (2019)

HADRON2019

2019/08/18

Outline


- Introduction
- $2 ^3P_0$ Model
- Numerical Result
- Summary

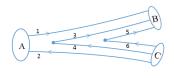
Introduction

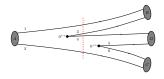
• 2008, Belle, $e^+e^-{ o}D^0D^-\pi^+$ PRL 100, 062001 (2008)

$$\frac{\mathcal{B}[\psi(4415) \to D^0 D^- \pi_{\mathsf{nonresonant}}^+]}{\mathcal{B}[\psi(4415) \to D\bar{D}_2^*(2460) \to D^0 D^- \pi^+]} < 0.22 \tag{1}$$

- 2009, Belle, $e^+e^- \to D^0D^{*-}\pi^+ + \text{c.c.}$: found no evidence of $\psi(4260)$, $\psi(4360)$, $\psi(4415)$, $\psi(4630)$ or $\psi(4660)$ with limited statistics PRD 80.
- 2018, BESIII, $e^+e^-{\to}D^0D^{*-}\pi^+$: Y(4220), $\psi(4415)$ prl 122, 102002 (2019)

Introduction

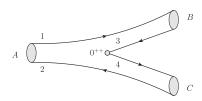

ullet 2010, Belle, $\Upsilon(5S){
ightarrow} B^{0,+}+{
m others:}$ PRD 81, 112003 (2010)


$$f(B\bar{B}\pi) = (0.0 \pm 1.1 \pm 0.3)\%,$$
 (2)

$$f(B\bar{B}^*\pi + B^*\bar{B}\pi) = (7.3^{+2.3}_{-2.1} \pm 0.8)\%, \tag{3}$$

$$f(B^*\bar{B}^*\pi) = (1.0^{+1.4}_{-1.3} \pm 0.4)\%.$$
 (4)

- ullet 3P_0 model, $X(4660)[car{c}] o \Lambda_car{\Lambda}_c$: Xiao et al. EPJC 78, 605 (2018)
 - $\Gamma_{\psi(4S,5S,6S)} \sim \text{MeV}$
 - $\bullet \ \Gamma_{\psi(3D,4D,5D)} \sim 0.1 \ {\rm MeV}$



3P_0 Model

• In the 3P_0 model, a light $q\bar{q}$ pair is created with the vacuum quantum number $J^{PC}=0^{++}$, and then rearranged with the quarks within the initial meson to produce two final mesons.

$$J^{PC} = 0^{++} \Rightarrow L = 1, S = 1 \Rightarrow {}^{2S+1}L_J = {}^{3}P_0$$
 (5)

L. Micu, Nucl. Phys. B 10, 521 (1969).

Transition operator

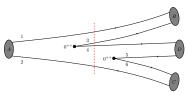
• Interaction Hamiltonian PRD 54, 6811 (1996)

$$H_{\rm int} = g_s \int d^3 \mathbf{x} \bar{\psi} \psi \tag{6}$$

where

$$\gamma = g_s/2m_q \tag{7}$$

Decay amplitude


$$\delta^{(3)} \left(\mathbf{P}_f - \mathbf{P}_i \right) \mathcal{M}^{M_{J_A} M_{J_B} M_{J_C}} = \langle f \mid H_{\mathsf{int}} \mid i \rangle \tag{8}$$

• In the nonrelativistic limit, the transition operator reads

$$T = -3\gamma \sum_{m} \langle 1m; 1 - m \mid 00 \rangle \int d^{3}\mathbf{k}_{4} d^{3}\mathbf{k}_{5} \delta^{3}(\mathbf{k}_{4} + \mathbf{k}_{5}) \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{k}_{4} - \mathbf{k}_{5}}{2} \right)$$
$$\gamma_{1-m}^{45} \varphi_{0}^{45} \omega_{0}^{45} b_{4i}^{\dagger}(\mathbf{k}_{4}) d_{5i}^{\dagger}(\mathbf{k}_{5}) \tag{9}$$

Transition operator

 \bullet Two pairs of $q\bar{q}$ are created in the three body open flavor decay processes

At the 2nd order EPJC 78, 605 (2018)

$$\delta^{(3)} \left(\mathbf{P}_{f} - \mathbf{P}_{i} \right) \mathcal{M}^{M_{J_{A}} M_{J_{B}} M_{J_{C}}} = \sum_{k} \frac{\langle f \mid H_{\mathsf{int}} \mid k \rangle \langle k \mid H_{\mathsf{int}} \mid i \rangle}{E_{k} - E_{i}}$$

$$\approx \frac{\langle f \mid H_{\mathsf{int}} H_{\mathsf{int}} \mid i \rangle}{2m_{q}} \tag{10}$$

where we take E_k-E_i as a constant: $E_k-E_i\approx 2m_q$ (closure approximation). PRD 44, 799 (1991); PRL 67, 1066 (1991)

Closure approximation: $E_k - E_i \approx 2m_q$

- (focus on 1⁻⁻ charmonium)
- quark level
 - ullet intermediate state initial state $\sim qar{q}$
- hadron level
 - Intermediate states: $E_k \sim (4.0 4.1)$ GeV:

$$D\bar{D}_1, D^*\bar{D}_1, D^*\bar{D}_0, D^*\bar{D}_2, J/\psi f_0(500),$$

 $h_c(1P)\pi, h_c(1P)\eta, \chi_{c0}(1P)\omega, \chi_{c2}(1P)\omega, \dots$

- Higher mass states [$\psi(4660)$, $\psi(4415)$, $\psi(4360)$]: \checkmark
- Lower mass states [$\psi(4040)$, $\psi(4160)$]: \times

Transition operator

ullet Transition operator $T_2 \sim T_1^2/2m_q$

$$T = \frac{9\gamma^{2}}{2m_{q}} \sum_{mm'} \langle 1m; 1 - m | 00 \rangle \langle 1m'; 1 - m' | 00 \rangle \int d^{3}\mathbf{k}_{3}d^{3}\mathbf{k}_{4}d^{3}\mathbf{k}_{5}d^{3}\mathbf{k}_{6}$$

$$\times \delta^{3}(\mathbf{k}_{3} + \mathbf{k}_{4})\delta^{3}(\mathbf{k}_{5} + \mathbf{k}_{6})\mathcal{Y}_{1}^{m} \left(\frac{\mathbf{k}_{3} - \mathbf{k}_{4}}{2}\right) \mathcal{Y}_{1}^{m'} \left(\frac{\mathbf{k}_{5} - \mathbf{k}_{6}}{2}\right)$$

$$\times \chi_{1,-m}^{34} \varphi_{0}^{34} \omega_{0}^{34} a_{3i}^{\dagger}(\mathbf{k}_{3}) b_{4j}^{\dagger}(\mathbf{k}_{4}) \chi_{1,-m'}^{56} \varphi_{0}^{56} \omega_{0}^{56} c_{5i'}^{\dagger}(\mathbf{k}_{5}) d_{6j'}^{\dagger}(\mathbf{k}_{6})$$

Mock state

Meson

$$\begin{split} &\left|B\left(n_B^{2S_B+1}L_BJ_BM_{J_B}\right)\left(\mathbf{P}_B\right)\right\rangle \\ =&\sqrt{2E_B}\sum_{M_{L_B}M_{S_B}}\left\langle L_BM_{L_B}S_BM_{S_B} \mid J_BM_{J_B}\right\rangle \\ &\times \int \mathrm{d}^3\mathbf{k}_a\mathrm{d}^3\mathbf{k}_b\delta^3(\mathbf{k}_a+\mathbf{k}_b-\mathbf{P}_B) \\ &\times \psi_{n_BL_BM_{L_B}}(\mathbf{k}_a,\mathbf{k}_b)\chi_{S_BM_{S_B}}^{ab}\varphi_B^{ab}\omega_B^{ab} \mid q_a(\mathbf{k}_a)\bar{q}_b(\mathbf{k}_b)\right\rangle \end{split}$$

Normalization

$$\langle B(\mathbf{P}_B) | B(\mathbf{P}_B') \rangle = 2E_B \delta^3(\mathbf{P}_B - \mathbf{P}_B')$$
 (11)

• Spatial wave function \rightarrow simple harmonic oscillator (SHO).

C. Hayne and N. Isgur, Phys. Rev. D 25, 1944 (1982).

Helicity amplitude

$$\begin{split} \mathcal{M}^{M_{J_A}M_{J_B}M_{J_C}M_{J_D}}(A \to BCD) &= \frac{\gamma^2}{2m_q} \sqrt{16E_A E_B E_C E_D} \times \sum_{mm'} \sum_{M_{L_A,B,C,D},M_{S_A,B,C,D}} \langle 1m; 1-m|00\rangle \langle 1m'; 1-m'|00\rangle \\ &\times \langle L_A M_{L_A} S_A M_{S_A} | J_A M_{J_A} \rangle \langle L_B M_{L_B} S_B M_{S_B} | J_B M_{J_B} \rangle \langle L_C M_{L_C} S_C M_{S_C} | J_C M_{J_C} \rangle \\ &\times \langle L_D M_{L_D} S_D M_{S_D} | J_D M_{J_D} \rangle \langle Y_{1S_M S_B}^{1S} Y_{S_C S_C S_C}^{2S_C} X_{S_D}^{2S_D} | X_{2M_{S_A}}^{12} X_{1,-m}^{26} \chi_{1,-m'}^{26} \rangle \\ &\times \langle \varphi_B^{13} \varphi_C^{26} \varphi_D^{45} | \varphi_A^{12} \varphi_0^{34} \varphi_0^{56} \rangle \times I_{M_{L_B} M_{L_C} M_{L_D}}^{M_{L_B} m_{L_C}}(\mathbf{p}), \end{split}$$

Decay width

$$\Gamma = \int_0^\infty dE_B dE_C \frac{\pi^3}{M_A} \frac{1}{2J_A + 1} \sum_{M_{J_A, B, C, D}} \left| \mathcal{M}^{M_{J_A} M_{J_B} M_{J_C} M_{J_D}} \right|^2.$$
(12)

Parameter

- ullet $\gamma_{car{c}}=6.95$, $\gamma_{bar{b}}=10.42$ prd 72, 054026 (2005); prd 92, 054034 (2015)
- $m_u = m_d = 330$ MeV, $m_s = 419$ MeV, $m_c = 1628$ MeV, $m_b = 4977$ MeV PRD 32, 189 (1985)
- SHO strength β PRD 69, 054008 (2004); 72, 054026 (2005); 92, 054034 (2015); 93, 034035 (2016)

$$\int d^3 \mathbf{p} \, \left| \psi_{nlm}^{\mathsf{SHO}}(\mathbf{p}) \right|^2 p^2 = \int d^3 \mathbf{p} \, \left| \Phi(\mathbf{p}) \right|^2 p^2$$

TABLE II. Masses and harmonic oscillator strength β 's of final state mesons used in the decays (in units of MeV).

	Meson	State	Mass [55]	β [28,51
	π	¹ S ₀	138.0	400
• $\beta_{c\bar{c}} = 500 \pm 50 \text{MeV}$	ρ	${}^{3}S_{1}$	775.3	400
$\theta \rho_{c\bar{c}} = 300\pm30$ MeV	ω	${}^{3}S_{1}$	782.6	400
	η	${}^{1}S_{0}$	547.9	400
• $\beta_{b\bar{b}} = 600 \pm 50 \text{ MeV}$	D	${}^{1}S_{0}$	1867.2	600
7 00	D^*	${}^{3}S_{1}$	2008.6	520
• $\alpha_{q\bar{q}}=400~{\rm MeV}$	D_s	${}^{1}S_{0}$	1968.3	650
$\alpha_{qq} = 400$ MeV	D_s^*	${}^{3}S_{1}$	2112.2	560
	B	${}^{1}S_{0}$	5279.5	580
	B^*	${}^{3}S_{1}$	5324.6	540
	B_s	${}^{1}S_{0}$	5366.9	640
	B_s^*	${}^{3}S_{1}$	5415.4	600

Decay width: $\psi(4360)$

TABLE III. The partial decay widths (in MeV) of the vector charmonium with a mass of 4368 MeV.

State	$\psi(4^3S_1)$	$\psi(3^3D_1)$
$\Gamma_{DD\pi}$ $\Gamma_{DD^*\pi}$	0.27 1.40	0.14
$\Gamma_{D^*D^*\pi}$	0.60	0.25
$\Gamma_{DD\eta}$	0.6 keV	0.3 keV

- \bullet Possible assignment: $\psi(3D)$, $\psi(4S)$ PRD 79, 094004 (2009); Int. J. Mod. Phys. E 22, 1330026 (2013).
- S- and D-waves are of same order.
- $DD^*\pi$ mode is dominant.

$$\mathcal{B}[\psi(4^3S_1)\to DD^*\pi] \sim 1.5\%, \quad \mathcal{B}[\psi(3^3D_1)\to DD^*\pi] \sim 1.3\%.$$

Decay width: $\psi(4415)$

TABLE IV. The partial decay widths (in MeV) of the vector charmonium with a mass of 4421 MeV.

State	$\psi(4^3S_1)$	$\psi(5^3S_1)$	$\psi(3^3D_1)$
$\Gamma_{DD\pi}$	0.38	0.11	0.21
$\Gamma_{DD^*\pi}$	2.01	0.96	1.84
$\Gamma_{D^*D^*\pi}$	1.07	0.59	0.52
$\Gamma_{DD\eta}$	5.4 keV	1.7 keV	2.9 keV

- Assignment: $\psi(4S)$ PLB 72, 57 (1977); PRD 72, 054026 (2005);
- $\mathcal{B}[\psi(4S) \to DD^*\pi] \sim 3.2\%$ PDG upper limit (11%) PRD 98, 030001 (2018)
- $\mathcal{B}[\psi(4S) \to DD\pi] \sim 0.6\%$ Belle upper limit (2.2%) PRL 100, 062001 (2008)
- \bullet Other assignments: $\psi(5S)$, $\psi(3D)$ PRD 79, 094004 (2009); Int. J. Mod. Phys. E 22, 1330026 (2013)

Decay width: $\psi(4660)$

TABLE I: The possible assignments of the Y(4660) with the predicted masses (MeV) from various models.

State	QM [46]	QM [47]	QM [48]	SSE/EA[49]	NR/GI [50]	SP [10]	LP/SP [51]
$\psi(4^3S_1)$	4625	4450	4389	4398/4426	4406/4450	4273	4412/4281
$\psi(5^3S_1)$			4641	4642/4672		4463	4711/4472
$\psi(6^3S_1)$				4804/4828		4608	
$\psi(3^3D_1)$		4520	4426	4464/4477		4317	4478/4336
$\psi(4^3D_1)$			4641	4690/4707			
$\psi(5^{3}D_{1})$				4840/4855			

TABLE V. The partial decay width (MeV) of the vector charmonium with a mass of 4643 MeV.

State	$\psi(4^3S_1)$	$\psi(5^{3}S_{1})$	$\psi(6^{3}S_{1})$	$\psi(3^3D_1)$	$\psi(4^3D_1)$	$\psi(5^3D_1)$
$\Gamma_{DD\pi}$	1.14	0.31	0.09	0.63	0.17	0.05
$\Gamma_{DD^*\pi}$	6.65	2.83	1.10	6.99	2.99	1.16
$\Gamma_{D^*D^*\pi}$	5.97	2.68	1.13	4.12	2.11	0.96
$\Gamma_{DD\rho}$	0.85	0.41	0.16	1.86	0.64	0.22
$\Gamma_{DD\omega}$	0.24	0.12	0.05	0.59	0.20	0.07
Γ_{DDn}	53.2 keV	15.3 keV	4.2 keV	29.1 keV	8.2 keV	2.2 keV
Γ_{DD^*n}	0.25	0.12	0.05	0.20	0.11	0.05
$\Gamma_{D^*D^*n}$	58.2 keV	38.7 keV	19.1 keV	8.5 keV	9.9 keV	7.5 keV
$\Gamma_{D,D,\eta}$	3.0 keV	0.8 keV	0.2 keV	1.6 keV	0.4 keV	0.1 keV
$\Gamma_{D_iD_i^*\eta}$	1.9 keV	1.3 keV	0.6 keV	12 eV	11 eV	7 eV

- Possible assignment: $\psi(4S, 5S, 6S)$, $\psi(3D, 4D, 5D)$.
- $D^{(*)}D^{(*)}\pi$ modes dominant.
- $DD\rho$, $DD\omega$ and $DD^*\eta$ modes are also important.

ullet The variation of the $\Gamma_{D^+D^-\pi^0}$ with the mass of the charmonium

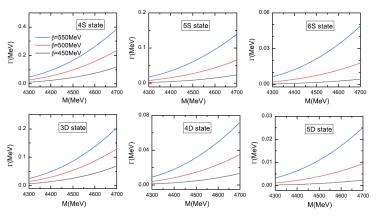


FIG. 2. The variation of the $D^+D^-\pi^0$ partial decay width with the mass of the D-wave vector charmonium. Note that $\Gamma_{D^*D^*\pi^0} = \frac{1}{6}\Gamma_{DD\pi}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta = 450,500$, and 550 MeV, respectively.

• The variation of the $\Gamma_{D^+D^{*-}\pi^0}$ with the mass of the charmonium

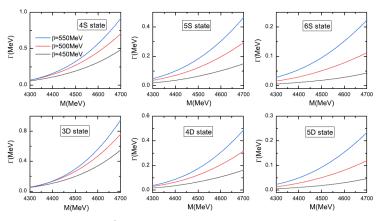


FIG. 3. The variation of the $D^+D^-\pi^0$ partial decay width with the mass of the D-wave vector charmonium. Note that $\Gamma_{D^*D^-\pi^0}=\frac{1}{17}\Gamma_{D^*\pi}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta=450,500$, and 550 MeV, respectively.

• The variation of the $\Gamma_{D^{*+}D^{*-}\pi^0}$ with the mass of the charmonium

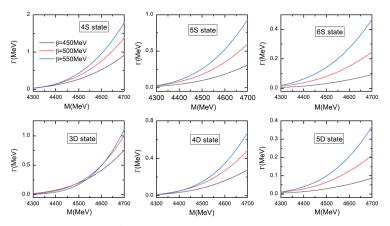


FIG. 4. The variation of the $D^+D^-\pi^0$ partial decay width with the mass of the D-wave vector charmonium. Note that $\Gamma_{D^+D^-\pi^0}=\frac{1}{6}\Gamma_{D^0\pi^0}$ since we have ignored the isospin breaking. The blue, red, and black lines correspond to the predictions with different values of the harmonic oscillator strength $\beta=450,500$, and 550 MeV, respectively.

- The partial widths are sensitive to mass.
- The partial widths increased as the mass increase.
- partial widths are not sensitive to β .

$\Upsilon(10860)$, $\Upsilon(11020)$

TABLE VII. The $B^{(*)}\bar{B}^{(*)}\pi$ partial decay widths of the vector bottomonium (in units of MeV). \mathcal{B}_{exp} represents the branching ratio for each corresponding channel.

Meson	State	Mode	$\beta = 550 \text{ MeV}$		$\beta = 600 \text{ MeV}$		$\beta = 65$	50 MeV		
			$\Gamma_{ m th}$	\mathcal{B}_{i}	$\Gamma_{\rm th}$	\mathcal{B}_{i}	Γ_{th}	\mathcal{B}_i	[36]	\mathcal{B}_{exp} [55]
Υ(10860)	$5^{3}S_{1}$	$BB\pi$ $BB^*\pi$ $B^*B^*\pi$	0.12 1.36 0.68	0.2% 2.7% 1.3%	0.20 1.22 0.61	0.4% 2.4% 1.2%	0.28 0.94 0.47	0.5% 1.8% 0.9%	(23–30) keV (5–6.6) keV	$(0.0 \pm 1.2)\%$ $(7.3 \pm 2.3)\%$ $(1.0 \pm 1.4)\%$
Υ(11020)	6^3S_1	$BB\pi$ $BB^*\pi$ $B^*B^*\pi$	0.17 2.50 2.12	0.3% 5.1% 4.3%	0.34 3.17 2.69	0.7% 6.5% 5.5%	0.55 3.41 2.97	1.1% 7.0% 6.1%		

- $\Upsilon(10860)$: $\mathcal{B}_{BB\pi}$ and $\mathcal{B}_{B^*B^*\pi}$ are consistent with the exp. data, while $\mathcal{B}_{BB^*\pi}$ is smaller but very close to the Belle's measurement.
- $\Upsilon(11020)$: $\mathcal{B}_{BB^*\pi}$ and $\mathcal{B}_{B^*B^*\pi}$ are quite large.

PLB 671, 55 (2009)

Summary

- ullet Extended the 3P_0 model to study the three body open flavor decays of heavy quarkonium
- Charmonium
 - $\Gamma[\psi(4360){\to}DD^*\pi]$ can reach up to 1 MeV.
 - $\mathcal{B}[\psi(4415){\to}DD^{(*)}\pi]$ are within the exp. upper limits.
 - $\psi(4660)$ decays dominantly into $D^{(*)}D^{(*)}\pi$.
- Bottomonium
 - $\mathcal{B}[\Upsilon(5S) \to BB\pi/B^*B^*\pi]$ are consistent with the exp.
 - $\mathcal{B}[\Upsilon(5S) \rightarrow BB^*\pi]$ is smaller but close to the Belle measurement.
 - $\Gamma[\Upsilon(6S) \rightarrow BB^*\pi/B^*B^*\pi]$ can reach up to several MeV.

Thank You!