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 How to study the hadron interaction
: Source functionSi(x, k)

φ(−)(r, q) : Relative wave function
C12(k1, k2) =

∫ d4x1 ∫ d4x2S1(x1, k1)S2(x2, k2) |φ(−)(r, q) |2

∫ d4x1S1(x1, k1) ∫ d4x2S2(x2, k2)

• Introduce relative source: !  
• Move to the center-of-mass frame

S(ki)

Koonin-Pratt formula : !  C(q) ≃ ∫ d3r S(r) |φ(−)(r, q) |2

S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322 309

Fig. 5.1. Correlation function in the LL model [26] as a function of qR and R/a0 in the case of reff/R = 0.

5.1.3. Lednick˝ and Lyuboshits model
In order to examine the interaction dependence of the correlation function, an analyticmodel developed by Lednick˝ and

Lyuboshits (LL) [26] is useful. In the LL model, the correlation function is obtained by using the asymptotic wave function
together with the shape-independent approximation in the scattering phase shift. Then the correlation function is given in
terms of the scattering amplitude and the effective range.

The asymptotic wave function Eq. (5.10) can be rewritten in the following form,

 asy(r) = S
�1


sin qr
qr

+ f (q)
eiqr

r

�
, (5.25)

where f (q) = (S � 1)/2iq is the scattering amplitude and S = e2i� is the S-matrix. With the Gaussian source (5.13), the
integral in the KP formula for  asy is reduced to

Z
1

0
dr S12(r)| asy(r)|2 =

1
|S|2


|f (q)|2

2R2 +
2Ref (q)
p
⇡R

F1(x) �
Imf (q)

R
F2(x) +

F2(x)
x

�
, (5.26)

where x = 2qR, F1(x) =
R x
0 dtet2�x2/x and F2(x) = (1 � e�x2)/x. The use of the asymptotic wave function is well justified

when the source size is sufficiently large compared to the range of the interaction [276]. In the single channel case, the
deviation from the asymptotic wave function at small q can be accounted for by using the effective range formula [277],

lim
q!0

1
|f (q)|2

Z
1

0
r2dr


| |

2
�

sin2(qr + �)

q2r2

�
= �

1
2
reff. (5.27)

The integral in the left hand side of Eq. (5.27) gives the correction to Eq. (5.26), when the integrand ismultiplied by the factor
e�r2/4R2 . By using Eqs. (5.26) and (5.27), one arrives at the interaction dependent part of the correlation function in the LL
model [26],

�CLL(q) =
1

|S|2


|f (q)|2

2R2 F3
⇣ reff

R

⌘
+

2Ref (q)
p
⇡R

F1(x) �
Imf (q)

R
F2(x)

�
+

1 � |S|2

|S|2

F2(x)
x

, (5.28)

where x = 2qR and the effective range correction appears in F3(reff/R) = 1 � reff/2
p
⇡R. In the formula given in Ref. [26],

one assumes  (�)
q = ( 

(+)
�q )⇤ and |S| = 1, then the last term in Eq. (5.28) does not exist.

Fig. 5.1 displays the interaction dependence of the correlation function in the LL model, C(q) = 1 + �CLL(q). The
correlation function is given in terms of the scattering amplitude f (q), which is known to bewell described by the scattering
length a0 and the effective range reff at low energy.

f = (q cot � � iq)�1, q cot � = �1/a0 + reffq2/2 + O(q4). (5.29)

Here the effects of Coulomb potential, channel coupling and the imaginary part of the potential (absorption) have been
ignored. It should be noted that the above discussion is based on the ‘‘nuclear physics’’ convention for the scattering length,
which leads to � ' �a0q at low energy.

The behavior of the correlation function can be understood on the same footing as discussed above; now the properties
of the wave function is represented by the corresponding scattering length. At negative scattering length a0 < 0, the
correlation function is always enhanced by the attractive interaction. At positive but small scattering length R/a0 & 0.453,
the correlation function is always suppressed. The positive a0 means that there is a bound state or the interaction is repulsive,
and the scatteringwave function has a node at r ' a0 at low energy. Then thewave function squared is generally suppressed
compared with the free wave function. At around the unitary limit 1/a0 ' 0, the correlation function is strongly enhanced

• !  is sensitive to !   

       • !  : Gaussian source size 
       • ! : scattering length

C(q) R /a0

R
a0

• Simple model with LL formula 

     • Static Gaussian source  
     • Effective range expansion

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Morita, et al., arXiv:1908.05414 

Powerful tool to study hadron interaction in low energy region

Hadron correlation in high energy nuclear collision
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Fig. 5.2. ⇤⇤ correlation function with the fss2 ⇤⇤ interaction [293,294], obtained by using the KP and LL formulae in comparison with data [22]. Left
panel shows the results without the feed-down correction and the residual correlations. Right panel shows the results with the feed-down and residual
source effects. The results in the fixed � case (� = (0.67)2) and the free � case are compared. Also shown in both panels are the results from the cylindrical
source including flow effects in the KP formula [36]. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

approach to the primary vertex. The long-lived resonance contribution from ⌃0 and a part of ⌅ is still supposed to reduce
the correlation strength via Eq. (5.31).

In Ref. [22], the datawere analyzedwithin the LLmodel Eq. (5.28)with an intercept parameter�. Furthermore, a Gaussian
term with two parameters taking account of the residual correlation at large q is included, although its origin has not been
understood. Therefore, a six-parameter fit to the data is made with

C(q) = N


1 + �

✓
�

1
2
e�4q2R2

+ �CLL(q)
◆

+ arese�4r2resq
2
�

(5.34)

where �CLL(q) is given by Eq. (5.28). Optimized parameters given in Ref. [22] are summarized in Table 5.1.
Although the quality of the fit is quite well (�2/Ndof ' 0.56), the obtained scattering length,1 a0 = 1.10 ± 0.37+0.68

�0.08 fm,
seems to conflict with the results from the observed double hypernucleus. Indeed, the ⇤⇤ bond energy in 6

⇤⇤He is found
to be �B⇤⇤ = B⇤⇤( 6

⇤⇤He) � 2B⇤(5⇤He) ' 1.01 MeV [38]. From �B⇤⇤( 6
⇤⇤He), the scattering length and the effective range

in the ⇤⇤1S0 channel are suggested as (a0, reff) = (�0.77 fm, 6.59 fm) [289] or (a0, reff) = (�0.575 fm, 6.45 fm) [290].
Recent update of the bond energy due to the update of the ⌅� mass [291] gives �B⇤⇤( 6

⇤⇤He) = 0.67 ± 0.17 MeV [79],
which suggests (a0, reff) = (�0.44 fm, 10.1 fm) [292].

A detailed investigation of the ⇤⇤ correlation function by making use of the KP formula Eq. (5.7) with various ⇤⇤ inter-
action potentials and source functions including collective expansion in both longitudinal and transverse directions has been
carried out in Ref. [36], It was found that after taking into account the correction of electromagnetic decays from ⌃0, the
scattering length is found to be consistentwith the double hypernuclei. The detailed comparison of themethods is discussed
in Ref. [35], which concludes that it is crucial to determine the value of �. Here we briefly outline the above points.

First, we clarify the difference between the C(q) obtained from the LL formula Eq. (5.28) and the KP formula Eq. (5.7).
In the left panel of Fig. 5.2, C(q) with the fss2 ⇤⇤ interaction is displayed. The corresponding values a0 = �0.81 fm and
reff = 3.99 fm are used as inputs for the LL formula. The difference between the two is small, thus confirming previous
studies [276] that indicate insensitivity of the correlation to the detailed shape of the wave function within the interaction
range. The difference of C(q) between the static spherical source (thin red, circles) and the expanding source (thin green,
triangles) indicates the effect of the collective expansion. The existence of the fast boost-invariant longitudinal expansion
deforms the source function such that the correlation function takes a different shape in the best fit to the data [36]. Note
that such a difference does not take place in the case of non-identical pairs; as seen in Eqs. (5.16) and (5.18), the quantum
statistics effect makes C(q) more sensitive to the source shape through the Fourier transformation.

Second, we estimate the contribution to N⇤
tot with the help of the statistical model and experimental data, to correct the

data for the long-lived resonance decay via Eqs. (5.30) and (5.31). Here⌃0 and⌅ are treated as long-lived resonances, since
other decay parents have much shorter lifetime thus only change the effective source size or have a negligible contribution.
Adopting data from p + Be collisions at plab = 28.5 GeV [295], we take N⌃0/N⇤ = 0.278, which is also consistent with
thermal model calculations. Taking into account the fact that the ⌅ yield in Au+Au collisions at

p
sNN = 200 GeV has been

shown to be 15% of total ⇤ [296] and the STAR candidate selection with the distance of closest approach less than 0.4 cm
may exclude a part of ⌅ decay contributions to ⇤, we estimate � = (0.67)2. If we take account of the ⌅ contribution into

1 The opposite sign convention of the scattering length is adopted in Ref. [22].
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Table 5.1

Optimized parameters for the ⇤⇤ correlation in the fixed and free � cases in the LL model. Numbers in the
parentheses for �2/DOF and DOF show those for a given (1/a0, reff). In the fixed � case, 1/a0 and reff are
strongly correlated with ares. Errors in the brackets in the fixed � case are those in the fixed ares case.

STAR [22] Ref. [35]
(Free �) Free � case Fixed � case

� 0.18 ± 0.05+0.12
�0.06 0.18 ± 0.05 (0.67)2 = 0.4489

1/a0 (fm�1) 0.91 ± 0.20 �1.26 ± 0.74 [±0.17]

a0 (fm) 1.10 ± 0.37+0.68
�0.08

reff (fm) 8.52 ± 2.56+2.09
�0.74 8.51 ± 2.14 1.76 ± 11.62 [±0.86]

R (fm) 2.96 ± 0.38+0.96
�0.02 2.88 ± 0.38 1.39 ± 0.71 [±0.17]

rres (fm) 0.43 ± 0.04+0.43
�0.03 0.43 ± 0.03 0.48 ± 0.10 [±0.02]

ares (fm) �0.044 ± 0.004+0.048
�0.009 �0.045 ± 0.004 �0.058 ± 0.069 [fixed]

N 1.006 ± 0.001 1.006 ± 0.001 1.006 ± 0.001 [±0.001]

�2/DOF 0.56 0.55(0.53) 0.64 (0.61) [0.63]
DOF 43 43(45) 44 (46) [45]

Fig. 5.3. Low-energy scattering parameters (a0, reff) of ⇤⇤. Contours show �2/DOF = 0.65 (� = (0.67)2, solid contour) and �2/DOF = 0.56 (free �,
dashed contour) in the LL model analysis of the ⇤⇤ correlation data. Symbols show (1/a0, reff) from ⇤⇤ potentials [293,294,297–302,289,290,292], and
shaded areas show the region favored by the ⇤⇤ correlation data in Ref. [36] (MFO ’15). Filled black circle with xy error bar shows the analysis result by
the STAR collaboration, where � is regarded as a free parameter [22].
Source: Figures are taken from Ref. [35] with some modifications.

the total yields, � = (0.572)2. It has been confirmed that the lower value � = (0.572)2 only leads to small quantitative
changes in the following analyses.

The right panel of Fig. 5.2 compares the results in the fixed � = (0.67)2 (solid line) and free � (dashed line) cases in the LL
model formulawith the residual correlation term Eq. (5.34). Table 5.1 summarizes the results of the fit to the⇤⇤ correlation
data. The free � case confirms the result obtained by the STAR in Ref. [22], while the fixed � case shows the opposite sign
of the scattering length. In the free � case where the optimal value is found to be � ' 0.18, quantum statistics and the pair
purity give C(q ! 0) = 1 � �/2 ⇠ 0.91 while the data show C(q ! 0) ' 0.82. Thus C(q) needs to be reduced at small q
by the ⇤⇤ interaction and positive a0 is favored. By contrast, for a fixed � = (0.67)2, the corresponding quantum statistical
correlation C⇤⇤(q ! 0) = 1 � �/2 ' 0.78 is slightly smaller than the observed correlation. With the residual source
contribution, ares ⇠ �0.06 fm, the difference from the data becomes more evident. The ⇤⇤ interaction needs to enhance
the correlation, and the optimal a0 value is found in the negative region, as concluded in Ref. [36].

One should note that the best fit result of the LL formula in the fixed � case differs from the KP formula result from the
cylindrical source including flow effects. This result may indicate the importance of fixing not only the purity � but also the
source geometry including the flow effects.

Fig. 5.3 summarizes the constraints from the ⇤⇤ correlation data at the present stage and its dependence on the
assumptions made. Also shown is the boundary of the favored region, given by �2/DOF = 0.65 (0.56), in the fixed (free)
� case in the LL model. The region in the free � case is consistent with that by the STAR collaboration [22]. As shown in
the previous subsection, negative and positive scattering lengths are favored in the fixed and free � cases, respectively. It
is found that negative scattering lengths are more favored in the pair purity probability range of � > 0.35. Namely, the
�2/DOF at the negative a0 local minima is smaller than that at the positive a0 local minima when � is fixed at a value

 1/a0 [fm−1]

 r e
[f

m
]

Ohnishi et. al. Nuclear Physics A 954 (2016) 294–307 

• !  correlation ; measured by STAR collabo. (later by ALICE collabo.)  
                                

• Detailed analysis of correlation function  
                Constraint to the !  threshold parameters ( ! )

ΛΛ

ΛΛ a0, re

L. Adamczyk, et al. PRL 114 (2015). S. Acharya et al., PRC 99 (2019) 

Hadron correlation in high energy nuclear collision

Morita et al. PRC 91(2015)  
Ohnishi et. al. Nuclear Physics A 954 (2016)
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!  correlationK−p
!  correlation: measured by ALICE collab.K−p

• p+p collision at ! ,  source radius !  - !  

• Strong enhancement ( ! ) at small momenta ==> Coulomb interaction 

• But larger than prediction with pure Coulomb ==> Strong interaction                                    

• Characteristic cusp at the !  threshold (k = 58 MeV) ==> isospin sym. breaking 

s = 5, 7, 13 TeV R = 1.13 fm 1.18 fm

C > 1

K̄0n

Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 13 TeVsALICE pp 

 < 1TS0.7 < 

  0.12 fm± 0.01 ± = 1.18 0r
 0.06± = 0.64 λ

p+ K⊕p -K
Coulomb
Coulomb+Strong (Kyoto Model)

lich Model)uCoulomb+Strong (J

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 7 TeVsALICE pp 

 < 1TS0.7 < 

 fm- 0.15
+ 0.17 0.02 ± = 1.13 0r

 0.08± = 0.76 λ

0 50 100 150 200 250
)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

)
k*(

C  = 5 TeVsALICE pp 

 < 1TS0.7 < 

 fm- 0.15
+ 0.17 0.02 ± = 1.13 0r

 0.07 ± = 0.68 λ

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250 )c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250
)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 
0 50 100 150 200 250

)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

0 50 100 150 200 250
)c (MeV/k*

0.4−
0.2−
0.0
0.2
0.4

 M
od

el
−

D
at

a 

Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the

5

thresholdK̄0n

Scattering studies with low-energy Kp femtoscopy in pp collisions at the LHC ALICE Collaboration

Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the

4

Can we derive constraint on !  interaction from !  correlation?K̄N K−p

ALICE, S. Acharya et al., (2019), 1905.13470. 
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the

4
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• Interaction: Jülich meson exchange model  
  

• Calculated with  
  • Coulomb (Gamow) + Strong int.  
  • ! !  with particle massK̄N+πΣ + πΛ

• Interaction: Based on Chiral SU(3) dynamics  

• Calculated with  
• Coulomb + Strong int.  
• !  w/ isospin ave. massK̄N (K−p + K̄0n)

Haidenbauer NPA 981 (2018)Ohnishi et al. NPA 954 (2016)  
Cho, et al.,  PPNP 95 (2017) 

Ikeda, Hyodo, Weise, NPA881 (2012) Refitted ver. of Müller-Groeling, et al., NPA 513 (1990)

!  correlationK−p
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Fig. 2: (Color online)(K�p � K+p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1. The measurement is presented by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. Three different potentials
were considered: Coulomb potential (blue band), Kyoto model [44–48] (light blue band), Jülich model [49] where
the physics masses of K� and K0are used [50] with the Coulomb interaction included (red band). In the bottom
panels, differences between data and model are shown. The bands represent the systematic uncertainty related to
the determination of the l parameter and to the source radius.

threshold of the K0n (K0n) channel at plab = 89 MeV/c [52] which corresponds to k
⇤ = 58 MeV/c. In

order to quantify the significance of the observed structure, and since the three measured distributions are
mutually compatible, the C(k⇤) measured at the three different energies were summed using the number
of events for each data sample as a weight. The resulting C(k⇤) was interpolated with a spline considering
the statistical uncertainties and the derivative of the spline was then evaluated. A change in the slope of
the derivative consistent with a cusp effect in the k

⇤ region between 50 and 60 MeV/c at the level of 4.4s
has been observed, to be compared with a significance of 30s for L(1520). The measurement presented
in this letter is therefore the first experimental evidence for the opening of the K0n (K0n) isospin breaking
channel, showing that the femtoscopy technique is a unique tool to study the Kp scattering, where the
conventional scattering experiments at fixed target are difficult to perform.

The experimental correlation functions were also used to test different potentials to describe the interac-
tion between K+p (K�p) and K�p (K+p). The measured correlation function C(k⇤) is compared with a
theoretical function using the following equation

C(k⇤) = (a+b · k⇤) ·
h
1+l · (C(k⇤)theoretical �1)

i
, (1)

where the baseline (a+ b · k
⇤) is introduced to take into account the remaining non-femtoscopic back-

ground contributions which might be present also after the ST selection. The slope, b, of the baseline is
fixed from Monte Carlo simulations based on PYTHIA 6 [53] and PYTHIA 8 [54], while the normal-
ization, a, is a free parameter of the fit. To assign a systematic uncertainty related to the slope of the
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Table 1: Summary of track selection criteria

Selection variable Value
|h | < 0.8
Number of TPC clusters � 70
DCAxy to primary vertex < 1 cm
DCAz to primary vertex < 1 cm
Tracks with kink topology rejected

K+(K�) transverse momentum pT
0.15 < pT < 0.3 GeV/c
0.4 < pT < 1.4 GeV/c

p(p) transverse momentum pT
0.4 < pT < 0.6 GeV/c
0.8 < pT < 3.0 GeV/c

Particle identification
n-sTPC <3
for K with pT > 0.4 and p with pT > 0.8:
n-sTPC <3 + n-sTOF <3

the deviations. The total systematic uncertainty was calculated as the quadratic sum of each source’s
contribution and amounts to about 3% in the considered k

⇤ intervals.

The measured correlation functions for (K+p � K�p) and (K�p � K+p) are shown in the upper panels
of Fig. 1 and Fig. 2.
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Fig. 1: (Color online)(K+p � K�p) correlation functions obtained from pp collisions at
p

s = 5 TeV (left), 7 TeV
(middle) and 13 TeV (right) fitted with Eq. 1 including only a Coulomb interaction (blue) or in addition the strong
interaction implemented in the Jülich model (red). The measurement is shown by the black markers, the vertical
lines and the boxes represent the statistical and systematic uncertainties respectively. In the bottom panels of the
figure, the difference between the data and models are shown. The bands represent the systematic uncertainty
related to the determination of the l parameter and to the source radius.

In both figures, each panel corresponds to a different collision energy, as indicated in the legend. The
structure that can be seen in the (K�p � K+p) correlation function at k

⇤ around 240 MeV/c in Fig. 2 is
consistent with the L(1520) which decays into K�p, with a center-of-mass momentum for the particle
pair of 243 MeV/c [51]. The correlation function of (K�p � K+p) exhibits also a structure between 50
and 60 MeV/c for the three collision energies. The k

⇤ position of the structure is consistent with the

4

We update the Kyoto model calculation  
and discuss the coupled-channel effect and interaction dependence.

ALICE, S. Acharya et al., (2019), 1905.13470. 

Ohnishi et al. NPA 954 (2016)  
Cho, et al.,  PPNP 95 (2017) 

Ikeda, Hyodo, Weise, NPA881 (2012)

• What we need to include 

     • Coulomb interaction 

     • Coupled-channel (decay channels) 

     • Threshold energy difference ( ! )  
          and open channel contribution ( ! )

K−p, K̄0n

K̄0n

!  correlationK−p

• Interaction: Based on Chiral SU(3) dynamics  

• Calculated with  
• Coulomb + Strong int.  
• !  w/ isospin ave. massK̄N (K−p + K̄0n)
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!  correlation with Koonin-Pratt FormulaK−p

Koonin-Pratt formula
C(k1, k2) =

∫ d4x1 ∫ d4x2S1(x1, k1)S2(x2, k2) |φ(−)(r, q) |2

∫ d4x1S1(x1, k1) ∫ d4x2S2(x2, k2)

• Static Gaussian source function: !S ∝ exp (−r2/4R2)
• R : Relative source radius

• Introduce relative source: !  

• Move to the center-of-mass frame

S(ki)

Koonin-Pratt formula : !  C(q) ≃ ∫ d3r S(r) |φ(−)(r, q) |2

• Consider only s-wave  

• Single-channel, no Coulomb int., non-identical particles

!C(q) = 1 + ∫ d3r S(r)[− | j0(qr) |2 + | χ(−)(r, q) |2 ]
Scattering wave function:  
    obtained by solving the Schrödinger Eq.

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

χ(−)(r, q) → 1
2iqr [eiqr − e−2iδe−iqr]

Free ! -wave: 
 (Spherical Bessel fcn.)

s
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!C(q) = 1 + ∫ d3r S(r)[− | j0(qr) |2 + | χ(−)(r, q) |2 ]
• With Coulomb interaction: !VCoulomb = α/r

!C(q) = ∫ d3r S(r)[ |φC,full(r, q) |2 − | jC
0 (qr) |2 + | χC,(−)(r, q) |2 ]

Full Coulomb  
wave 

Scattering wave 
 function with Coulomb int.

Coulomb 
s-wave: 

!  correlation with Koonin-Pratt FormulaK−p

Known fcn. 
(Confluent hypergeometric fnc.)

Schrödinger Eq. with  
       !V = Vstrong + VCoulomb
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!C(q) = 1 + ∫ d3r S(r)[− | j0(qr) |2 + | χ(−)(r, q) |2 ]

!C(q) = ∫ d3r S(r)[ |φC,full(r, q) |2 − | jC
0 (qr) |2 + | χC,(−)(r, q) |2 ]

Full Coulomb  
wave 

Scattering wave 
 function with Coulomb int.

Coulomb 
s-wave: 

• Coupled channel case: 

!Ci(q) = ∫ d3r Si(r)[ |φC,full(r, q) |2 − | jC
0 (qr) |2 + | χC,(−)

i (r, q) |2 ]+ ∑
j≠i

ωj ∫ d3r Sj(r) | χC,(−)
j (r, q) |2 ]

Coupled channel effect

• !  : weight of channel j ==> We assume ! . 

• !  : channel j component of  wave function  
                  with channel i outgoing boundary condition

ωj ωj = 1
χ(−)

j (r, q)

!  correlation with Koonin-Pratt FormulaK−p

 R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)

• With Coulomb interaction: !VCoulomb = α/r
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Vij(r, E) = e−(bi/2+bj/2)r2

∑ αmax
α=0 Kα,ij (E/100 MeV)α

Chiral SU(3) based ! - ! - !  potentialK̄N πΣ πΛ Miyahara, Hyodo, Weise, PRC 98 (2018) 

• Constructed based on the amplitude with chiral SU(3) dynamics 

• Coupled-channel, energy dependent as 

Coupled-channel boundary condition

• Reproduce the coupled-channel amplitude around the �  sub-threshold regionK̄N

χ(C)
j (r, q) → aj(outgoing wave) + bj(incoming wave)

Ikeda, Hyodo, Weise, NPA881 (2012)

• Asymptotic waves

open channels :

closed channels : χ(C)
j (r, q) → aj(diverg . solution) + bj(converg . solution)

• Out-going wave boundary condition for �  channel ; �K−p |aK−p | = 1, |aothers | = 0

K−p outgoingK−

p

!  correlation with Koonin-Pratt FormulaK−p

K−p K̄0n π0Σ0⋯

 R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)



�16

Results
!  correlation in particle basis w/ CoulombK−p

• �  calculated with � �  components

• Inclusion of �  ==> enhance correlation and the cusp structure

• Inclusion of decay channels ==> non-negligible enhancement

C(q) K−p, K−p + K̄0n, K̄N + πΣ + πΛ
K̄0n

Preliminary!

0.6

0.7

0.8

0.9

1

1.1

1.2

0 50 100 150 200 250 300

R = 1.2 fm
C
(q
)

q [MeV]

K�p
K�p+ K̄0n

Full

Inclusion of coupled channel effect is essential for !  correlationK−p
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S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322 317
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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K̄N,`=0 = C0
�(K�p) + �(K̄ 0n)

p
2

 0(r) + C1
��(K�p) + �(K̄ 0n)

p
2

 1(r), (5.41)

= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be

 K�p(r) !
1

2iqr

h
eiqr � S̃

�1
K�pe

�iqr
i
, S̃K�p = 2

�
S

�1
0 + S

�1
1

��1
, SI = e2i�I . (5.43)

Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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�(K�p) + �(K̄ 0n)
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��(K�p) + �(K̄ 0n)
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 1(r), (5.41)

= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be

 K�p(r) !
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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K−pK−pe−iqr]eK−p
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μK−pq

μK̄0nqK̄0n
𝒮†

K−pK̄0n
e−iqK̄0nreK̄0n

• �  single channel potential 
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Results
Interaction dependence of !  correlation K̄N

• �  �  interaction <== strongly constrained by the SIDDHARTA constraint 

• �  �  interaction is not well known ==> vary �  

• SIDDHARTA constraint on �  ==> Varied region of �  as �

I = 0 K̄N
I = 1 K̄N VI=1

K̄N−K̄N → βVI=1
K̄N−K̄N

aK−p
0 β −0.24 < β < 1.09

• For  � ,  
   • Remarkable suppression around �  threshold �

       • Moderate cusp structure                 

β = − 0.24
K̄0n (q ≃ 58 MeV)

Preliminary!

!  interaction can be determined with the detailed analysis!I = 1 K̄N

β
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Conclusion
Hadron correlation in high energy nuclear collisions is a powerful tool to 
study the interaction of strangeness systems. 

!  correlation function has been studied with the Koonin-Pratt formula 
and interaction based on chiral dynamics, including Coulomb 
interaction, coupled-channel effect, and threshold energy difference 
between !  and ! . Characteristic cusp structure is found at !  
threshold, as found in ALICE data.  

!  is also sensitive to !  !  interaction, so that detailed analysis of 
!  correlation can give the constraint on !  interaction. 

Detailed comparison with experimental data ==> Future study

K−p

K−p K̄0n K̄0n

C(q) I = 1 K̄N
K−p I = 1

Kamiya, Hyodo, Morita and Ohnishi in preparation
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 How to study the hadron interaction
: Source functionSi(x, k)

φ(−)(r, q) : Relative wave function
C12(k1, k2) =

∫ d4x1 ∫ d4x2S1(x1, k1)S2(x2, k2) |φ(−)(r, q) |2

∫ d4x1S1(x1, k1) ∫ d4x2S2(x2, k2)

• Introduce relative source: !  
• Move to the center-of-mass frame

S(ki)

Koonin-Pratt formula : !  C(q) ≃ ∫ d3r S(r) |φ(−)(r, q) |2

S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322 309

Fig. 5.1. Correlation function in the LL model [26] as a function of qR and R/a0 in the case of reff/R = 0.

5.1.3. Lednick˝ and Lyuboshits model
In order to examine the interaction dependence of the correlation function, an analyticmodel developed by Lednick˝ and

Lyuboshits (LL) [26] is useful. In the LL model, the correlation function is obtained by using the asymptotic wave function
together with the shape-independent approximation in the scattering phase shift. Then the correlation function is given in
terms of the scattering amplitude and the effective range.

The asymptotic wave function Eq. (5.10) can be rewritten in the following form,

 asy(r) = S
�1


sin qr
qr

+ f (q)
eiqr

r

�
, (5.25)

where f (q) = (S � 1)/2iq is the scattering amplitude and S = e2i� is the S-matrix. With the Gaussian source (5.13), the
integral in the KP formula for  asy is reduced to

Z
1

0
dr S12(r)| asy(r)|2 =

1
|S|2


|f (q)|2

2R2 +
2Ref (q)
p
⇡R

F1(x) �
Imf (q)

R
F2(x) +

F2(x)
x

�
, (5.26)

where x = 2qR, F1(x) =
R x
0 dtet2�x2/x and F2(x) = (1 � e�x2)/x. The use of the asymptotic wave function is well justified

when the source size is sufficiently large compared to the range of the interaction [276]. In the single channel case, the
deviation from the asymptotic wave function at small q can be accounted for by using the effective range formula [277],

lim
q!0

1
|f (q)|2

Z
1

0
r2dr


| |

2
�

sin2(qr + �)

q2r2

�
= �

1
2
reff. (5.27)

The integral in the left hand side of Eq. (5.27) gives the correction to Eq. (5.26), when the integrand ismultiplied by the factor
e�r2/4R2 . By using Eqs. (5.26) and (5.27), one arrives at the interaction dependent part of the correlation function in the LL
model [26],

�CLL(q) =
1

|S|2


|f (q)|2

2R2 F3
⇣ reff

R

⌘
+

2Ref (q)
p
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F1(x) �
Imf (q)

R
F2(x)

�
+

1 � |S|2

|S|2

F2(x)
x

, (5.28)

where x = 2qR and the effective range correction appears in F3(reff/R) = 1 � reff/2
p
⇡R. In the formula given in Ref. [26],

one assumes  (�)
q = ( 

(+)
�q )⇤ and |S| = 1, then the last term in Eq. (5.28) does not exist.

Fig. 5.1 displays the interaction dependence of the correlation function in the LL model, C(q) = 1 + �CLL(q). The
correlation function is given in terms of the scattering amplitude f (q), which is known to bewell described by the scattering
length a0 and the effective range reff at low energy.

f = (q cot � � iq)�1, q cot � = �1/a0 + reffq2/2 + O(q4). (5.29)

Here the effects of Coulomb potential, channel coupling and the imaginary part of the potential (absorption) have been
ignored. It should be noted that the above discussion is based on the ‘‘nuclear physics’’ convention for the scattering length,
which leads to � ' �a0q at low energy.

The behavior of the correlation function can be understood on the same footing as discussed above; now the properties
of the wave function is represented by the corresponding scattering length. At negative scattering length a0 < 0, the
correlation function is always enhanced by the attractive interaction. At positive but small scattering length R/a0 & 0.453,
the correlation function is always suppressed. The positive a0 means that there is a bound state or the interaction is repulsive,
and the scatteringwave function has a node at r ' a0 at low energy. Then thewave function squared is generally suppressed
compared with the free wave function. At around the unitary limit 1/a0 ' 0, the correlation function is strongly enhanced

• !  is sensitive to !   

       • !  : Gaussian source size 
       • ! : scattering length

C(q) R /a0

R
a0

• Simple model with LL formula 

     • Static Gaussian source  
     • Effective range expansion

S.E. Koonin, PLB 70 (1977)  
S. Pratt et. al. PRC 42 (1990) 

R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

Morita, et al., arXiv:1908.05414 

Powerful tool to study hadron interaction in low energy region

Hadron correlation in high energy nuclear collision
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Results
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Results
!  correlation in particle basis w/o CoulombK−p

• �  calculated with � all of coupled-channel components

• Inclusion of �  ==> enhance correlation and the cusp structure

• Inclusion of decay channels ==> non-negligible enhancement

C(q) K−p, K−p + K̄0n,
K̄0n
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Comparison with previous result
Comparison with previous results

S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322 317
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),

 
(�)

K̄N,`=0 = C0
�(K�p) + �(K̄ 0n)
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= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be
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1
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.

S. Cho et al. / Progress in Particle and Nuclear Physics 95 (2017) 279–322 317

1

1.05

1.1

1.15

1.2

1.25

C
(q

)

0.95

1.3

1

1.05

C
(q

)

0.95

1.1

0.05 0.1 0.15 0.2 0.25
q [GeV/c]

0 0.3 0.05 0.1 0.15 0.2 0.25
q [GeV/c]

0 0.3

Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
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(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),
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= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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Fig. 5.7. K�p correlation function with a static source with R = 3 fm. The left panel shows the K�p correlation without the Coulomb function obtained
by the potential in Ref. [69] (solid line) and by the LL model formula (see Section 5.1.3) with the same amplitude (dotted line). The correlations of I = 0
(dashed line) and I = 1 (dash-dotted line) are also described. The right panel shows the K�p correlation with the Coulomb interaction (solid line), together
with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),

 
(�)

K̄N,`=0 = C0
�(K�p) + �(K̄ 0n)

p
2

 0(r) + C1
��(K�p) + �(K̄ 0n)

p
2

 1(r), (5.41)

= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/
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2. Thus, the asymptotic K�p wave function is found to be
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Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.
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with the results only with the strong interaction (dashed line) and with the Coulomb interaction (dotted line).

A general form of the K̄N wave function  (�)

K̄N,`=0 can be written as the superposition of the isospin wave function  I(r),
which has the asymptotic form e�i�I sin(qr + �I)/(qr),

 
(�)

K̄N,`=0 = C0
�(K�p) + �(K̄ 0n)

p
2

 0(r) + C1
��(K�p) + �(K̄ 0n)

p
2

 1(r), (5.41)

= �(K�p) K�p(r) + �(K̄ 0n) K̄0n(r), (5.42)

where �(K�p) and �(K̄ 0n) represent the isospin wave function of the physical state. For the wave function used in the
correlation function, the K�p channel should satisfy the outgoing boundary condition as in Eq. (5.10). On the other hand,
the outgoing wave in the K̄ 0n channel should disappear. From these conditions, the coefficients C0 and C1 are determined
as C0 = �C1 = 1/

p
2. Thus, the asymptotic K�p wave function is found to be

 K�p(r) !
1

2iqr

h
eiqr � S̃

�1
K�pe

�iqr
i
, S̃K�p = 2

�
S

�1
0 + S

�1
1

��1
, SI = e2i�I . (5.43)

Because of the characteristic boundary condition for the coupled-channel correlation function, the obtained S̃K�p is different
from the S-matrix in the K�p channel SK�p = (S0 + S1)/2 for usual scattering experiments.

The left panel of Fig. 5.7(left) shows the K�p correlation function without the Coulomb interaction. The source size of
nonidentical particle pairs can be estimated as R =

q
(R2

K + R2
p)/2. Considering that the kaon source size in Au+Au collisions

at
p
sNN = 200 GeV is estimated as RK = 2–5 fm [304,305] and the proton source size is expected to be similar, R = 3.0 fm

is used in this study. Because of the small interaction range of the K̄N potential (0.4 fm [69]) owing to the absence of the ⇡
exchange, the short range details of the K̄N interaction does not affect the correlation function for the source size R = 3.0 fm.
Actually, the correlation function is well reproduced by the LLmodel explained in Section 5.1.3, as shown by the dashed line
in Fig. 5.7(left), which assumes a zero range interaction and uses the asymptotic behavior for the wave function.

There is another interesting feature, i.e., the existence of the bump and dip structures, around q ⇠ 0.05–0.15 GeV/c,
which does not appear in theK�p ! K�p scattering amplitude. Its origin seems to be the characteristic isospin combination
of S̃K�p in Eq. (5.43). Especially, the dip structure around q ⇠ 0.15 GeV/c is a good example, because the K�p correlation
function is smaller than unity, though both of the K̄N(I = 0) and K̄N(I = 1) correlation functions are larger than unity in
the corresponding energy region [see dashed (I = 0) and dash-dotted (I = 1) lines in Fig. 5.7(left)], reflecting the attractive
K̄N(I = 0, 1) interaction. Thus, the coupled-channel correlation function gives us information complementary to that from
the K�p scattering.

For the direct comparison with future experiments, the K�p correlation with the Coulomb interaction is shown by the
solid line in Fig. 5.7(right). Similar to the p⌦ correlation in Section 5.3.2, the K�p correlation is largely enhanced by the
Coulomb interaction in the small q region (q . 0.1 GeV/c). On the other hand, in the relatively higher energy region, the
correlation function is determined by the strong interaction. As a result, the interesting dip structure in Fig. 5.7(left) is kept
in the case with the Coulomb interaction in Fig. 5.7(right).

It should be noted that the ⇤(1520) effect, which appears in the d-wave K̄N(I = 0) scattering, is not included in the
above results. Because the ⇤(1520) energy region corresponds to q ⇠ 0.24 GeV/c and the width of ⇤(1520) is not very
large (⇠15 MeV), the inclusion of the⇤(1520) would not affect very much the dip structure around q ⇠ 0.15 GeV/c . Thus,
the interesting feature of the isospin interference is expected to be seen in actual measurements.

ψ → 1
2iqr [eiqr − 𝒮†

K−pK−pe−iqr]eK−p

−
μK−pq

μK̄0nqK̄0n
𝒮†

K−pK̄0n
e−iqK̄0nreK̄0n

• �  single channel potential 

• Approximate outgoing boundary condition  
             (Neglect coupling to �  and � )

K̄N

πΣ πΛ

• � - � - �  coupled channel potential 

• Full outgoing boundary condition  
           

K̄N πΣ πΛ

Comparison with previous result
S. Cho et al., PPNP 95 (2017)Previous study Current study
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Results
Source size dependence of !  correlationK−p
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