Properties of X(3872) beyond effective range expansion

Xian-Wei Kang Beijing Normal University

In collaboration with J. A. Oller Based on arXiv:1612.08420, EPJC2017

At Guilin, August 17, 2019

Introduction

- A series of exotic hadron candidate XYZ were and are observed, cannot be accommodated by potential model kinematical effects, molecular, quark-gluon hybrid, et al..
- Typically different scenarios predicts different constituents, in practice, may involve several mechanism
 - ---- compositeness
- Stay close to threshold of meson pairs: only 2-3 MeV above meson pair threshold
 - → effective range expansion (ERE)

Compositeness for resonance

- Weinberg compositeness condition: wave function renormalization constant Z=0. In fact, Z = 1 X, where $X = -\gamma^2 \frac{dG(s_R)}{ds_R}$ quantifies the weight of constituents; γ is the residue for t(s) in the 1st sheet at the pole, and G is the two-point loop function.
- only applied to bound state model-independent relation for deuteron [Weinberg 1963; 1965]
- For resonance case, as long as $\sqrt{\text{Re}E_R^2}$ larger than the lightest threshold, $X=|\gamma^2\frac{dG(s_R)}{s_R}|$, γ residue in the 2nd sheet [Guo and Oller, PRD2015]
- Adapted to non-relativistic case, criterion: $M_R > M_{\rm th}$, applied to Z_b and Z_c states [Kang, Guo and Oller, PRD2016]

Inclusion of CDD pole and ERE

- Only right-hand cut without crossed-channel effect [Oller and Oset, PRD1999] $t(E) = \left[\sum_{i} \frac{g_{i}}{E M_{\text{CDD},i}} + \beta ik\right]^{-1}$
- ERE: $t(E) = [-1/a + 1/2 r k^2 ik]^{-1}$
- Expansion of Re $t(E)^{-1}$ in powers of k^2 is equivalent to ERE, but worry for the small scale $[M_{CDD} M_{th}]$, which restricts the validity range.
- M_{CDD} far away from M_{th}, then modulu of r is around 1 fm, otherwise r is very large.

$$1/a = \frac{g_i}{M_{\text{CDD}} - M_{\text{th}}} - \beta, \quad r = -\frac{g_i}{\mu (M_{\text{th}} - M_{\text{CDD}})^2}$$

 M_{CDD} close to M_{th}, then small X, i.e., containing also other important components, e.g., compact quark-gluon states; M_{CDD} far from M_{th}, then the two meson constitute dominates

Observation of the X(3872)

- First observation from Belle, PRL2003, triggering voluminous amount of papers
- PDG determination:

$$I^G(J^{PC}) = 0^+(1^{++}),$$
 $M = 3871.69 \pm 0.17 \text{ MeV}, \Gamma < 1.2 \text{ MeV}, \text{ CL} = 90\%$ $\bar{D}D^*: C = + \text{ combination } (D\bar{D}^* + \bar{D}D^*)/\sqrt{2}$ threshold $M_{\text{th}} = 3871.81 \text{ MeV}$

- From now on, all the energy and $M_{\rm CDD}$ are measured respective to $M_{\rm th}$. X(3872) mass: -0.11 ± 0.17 MeV
- Nature: molecular like virtual state (V) and bound state (B), or preexisting state, etc.

Nature of X(3872)

- V or B scenarios are typically based on ERE analysis
 [Hanhart et al PRD76,034007('07); Braaten et al PRD81, 014019('10)]
- But as mentioned, a nearby CDD pole around threshold could spoil ERE strongly. Recall previous slide!
- all these scenarios can not be excluded
- New points: these are obtained by parameterizing data in more general terms
 - a simultaneous virtual and bound state (V+B);
 - double/triple virtual state → higher-order S-matrix pole.

Experimental situation: \bar{D}^0D^{*0} channel

- the decay chain: $B \to X(3872)K \to \bar{D}^0 D^{*0}K$
- Left: BaBar2008, Right: Belle2010
- BaBar has total number of $B\bar{B}$ pairs, $N_{B\bar{B}}^{\text{BaBar}}=3.83\cdot 10^8$, while $N_{B\bar{B}}^{\text{Belle}}/N_{B\bar{B}}^{\text{BaBar}}=1.75$

Experimental situation: $J/\psi\pi\pi$ channel

- the decay chain: $B \to X(3872)K \to J/\psi \pi^+ \pi^- K$
- Left: BaBar2008, Right: Belle2008
- Data are compatible with each other.

Experimental situation: $J/\psi\pi\pi$ channel continued

- the decay chain: $p\bar{p} \to X(3872) + \text{ all with } X(3872) \to J/\psi \pi^+\pi^-$
- The inset shows an enlargement of the region around the X(3872) peak, with very small bin width of 1.25 MeV.
- "Precision Measurement of the X(3872) in $J/\psi\pi\pi$ Decays" from CDF2009.

Formalism (1)

- Exp summary: Belle $D\bar{D}\pi$ + BaBar $J/\psi\pi\pi$ + Belle $J/\psi\pi\pi$ + CDF $J/\psi\pi\pi$
- As introduced, scattering amplitude

$$t(E) = \left(\frac{\lambda}{E - M_{\text{CDD}}} + \beta - ik(E)\right)^{-1},$$

more general than ERE

 Removing the extra zeros due to the CDD pole, one ends with the final-state interaction

$$d(E) = \left(1 + \frac{E - M_{\text{CDD}}}{\lambda}(\beta - ik)\right)^{-1}$$

[Oller PLB2000, Bugg PLB2003]

• When M_{CDD} far, $M_{\text{CDD}} \to \infty$ keeping λ/M_{CDD} fixed, one recovers the scattering length approximation

$$t(E) \Longrightarrow f(E) = \frac{1}{-\lambda/M_{\text{CDD}} + \beta - ik} = \frac{1}{-\gamma - ik}$$

Formalism (2)

• The normalized standard non-relativistic mass distribution for a narrow resonance or bound state $(\Gamma_X \to 0)$

$$\frac{d\hat{M}}{dE} = \frac{\Gamma_X |d(E)|^2}{2\pi |\alpha|^2}$$

- α is a constant, obtained by singling out the pole contribution, in fact, the residue of d(E), d(E) ~ α/(E-E_p, E_p pole position.
- Normalization integral $\mathcal{N}=\int_{-\infty}^{\infty}dErac{d\hat{M}}{dE}$
- For a narrow resonance (including bound state), $\mathcal{N} \approx 1$, but not so when d(E) has a shape strongly departs from a non-relativistic Breit-Wigner, e.g., for a virtual state
- For f(E) (ERE), the integral does not converge, just integrate in the signal region.

Formalism (3): event distribution for $J/\psi\pi\pi$ channel

• For $B \to KJ/\psi \pi \pi$ channel [simpler]:

$$N_i = 2N_{Bar{B}} \left[\mathcal{B}_J \int_{E_i - \Delta/2}^{E_i + \Delta/2} dE' \int_{-\infty}^{\infty} dER(E', E) rac{d\hat{M}}{dE} + cbg_J \Delta
ight]$$

- For $p\bar{p}$ to $J/\psi\pi\pi$ channel: just replace $2N_{B\bar{B}}$ by $\mathcal{L}\sigma_{p\bar{p}\to XAII}$, with \mathcal{L} luminosity, and total cross section σ for $p\bar{p}\to X+AII$.
- ullet R(E',E) is the Gaussian, experimental resolution function
- $\int_{E_i-\Delta/2}^{E_i+\Delta/2} dE'$ indicates the integration in the bin width.

Formalism (4): event distribution for \bar{D}^0D^{*0} channel

• For $B \to K\bar{D}^0 D^{*0}$ channel [taking into account the small width of D^* , $\Gamma_* \approx 65 \text{ KeV}$]

$$\begin{split} N_i &= 2N_{B\bar{B}} \int_{E_i - \Delta/2}^{E_i + \Delta/2} dE' \int_0^\infty d\mathcal{E}' R(E', \mathcal{E}') \sqrt{\mathcal{E}'} \\ &\times \left[\frac{\mathcal{B}_D \Gamma_*}{\sqrt{2}\pi \left(\sqrt{E_X^2 + \Gamma_*^2/4} - E_X \right)^{1/2}} \int_{-\infty}^\infty dE \frac{d\hat{M}}{dE} \frac{1}{|\mathcal{E}' - E - i\Gamma_*/2|^2} + \text{cbg}_D \right] \end{split}$$

• Pole position $E_X - i\Gamma_X/2$, with E_X relative to $\bar{D}^0 D^{*0}$ (reduced mass $\mu \approx 1 \text{GeV}$) threshold, momentum at pole position k_X .

Fit strategy

- \mathcal{B}_D , \mathcal{B}_J , cbg_D , cbg_J , overall constants and background are always free parameters
- As mentioned, for bound state, B can be justified as branching ratio, otherwise not.
- M_{CDD} , λ , β characterize the line shape of d(E).
- Braaten et al has also used ERE (only scattering length), but fit separately
- C. Hanhart et al used ERE including the effective range.
- One should use more general d(E), other than ERE!
- Maximize likelihood fit, data errors are asymmetric.

Different scenarios

- Case i): using ERE, which is a pure bound state, making combined fits to all the existing data
- Case ii): imposing t(E) has a virtual state, one can express λ and β from E_R and M_{CDD}.
- Case iii): taking into account the coupled channel effect,
 E_R determines the shape of t(E):
 Quadratic equation: two solutions with case iii). I and case iii).II

Results

Results

Cases	Pole position [MeV]	X	Residue [GeV ²]	$egin{array}{c} Y_{D1} \ Y_{D2} \ Y_J \ Y_J^{(p)} \end{array}$
1	$-0.19^{+0.01}_{-0.01} - i0.0325$	1.0	$14.78^{+0.38}_{-0.14}$	$7.49^{+0.71}_{-0.41}$ $6.45^{+0.32}_{-0.47}$ $79.03^{+5.65}_{-6.11}$ $5.23^{+0.07}_{-0.11} \times 10^{3}$
2.I	$-0.36^{+0.08}_{-0.10} - i\ 0.18^{+0.01}_{-0.02} \\ -0.70^{+0.11}_{-0.13} + i\ 0.17^{+0.02}_{-0.01}$		$-47.48^{+9.76}_{-12.40} - i\ 66.06^{+10.87}_{-13.50} 82.69^{+14.84}_{-11.88} + i\ 66.03^{+13.50}_{-10.87}$	$83.13^{+22.42}_{-16.15}$ $40.13^{+11.86}_{-7.25}$ $8.44^{+3.64}_{-2.59} \times 10^{3}$ $5.78^{+2.29}_{-1.65} \times 10^{5}$
2.II	$\begin{array}{l} -0.33^{+0.04}_{-0.03} - i 0.31^{+0.02}_{-0.01} \\ -0.84^{+0.07}_{-0.05} + i 0.77^{+0.03}_{-0.04} \\ -1.67^{+0.10}_{-0.08} - i 0.49^{+0.02}_{-0.02} \end{array}$		$\begin{aligned} &-6.24^{+2.80}_{-2.20}-i~1.41^{+0.14}_{-0.10}\times10^2\\ &(2.32^{+0.16}_{-0.21}-i~1.77^{+0.08}_{-0.08})\times10^2\\ &(-3.26^{+0.22}_{-0.16}+i~3.18^{+0.8}_{-0.25})\times10^2 \end{aligned}$	$79.75^{+22.46}_{-19.81}$ $42.20^{+9.18}_{-8.02}$ $9.23^{+1.60}_{-1.57} \times 10^{3}$ $6.23^{+0.71}_{-0.84} \times 10^{5}$
3.I	$-0.50^{+0.04}_{-0.03} \\ -0.68^{+0.05}_{-0.03}$	$0.061^{+0.003}_{-0.002}$	$1.52^{+0.01}_{-0.01}$ $2.72^{+0.02}_{-0.04}$	$25.45^{+0.05}_{-4.15}$ $12.29^{+1.32}_{-1.89}$ $80.14^{+5.67}_{-5.19}$ $5.26^{+0.12}_{-0.08} \times 10^{3}$
3.II	$-0.51^{+0.03}_{-0.01}\\ -1.06^{+0.05}_{-0.02}$	$0.158^{+0.001}_{-0.001}$	$3.96_{-0.08}^{+0.03}$ $7.56_{-0.20}^{+0.08}$	22.90 ^{+2.94} -3.02 11.03 ^{+1.40} -5.36 5.28 ^{+0.05} -5.28 ⁺

Highlights

- New! Case ii): double/triple virtual-state pole, which degenerates to one in the limit of vanishing D* width, an example of higher-order S—matrix pole. Residues for this case are very large.
- New! Case iii): As mentioned, in this scenario, <u>a simultaneous virtual and bound state</u>, where CDD pole is very close to threshold, resulting a very small compositeness, typically a few percent, which is a <u>preexisting state</u>, also fits with Morgan criterion [Morgan, NPA1992].