Partial Wave Mixing in Hamiltonian Effective Field Theory (HEFT)

Yan Li^1 Jia-jun Wu^1 Curtis D. Abell² Derek B. Leinweber² Anthony W. Thomas^{2,3}

¹School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

²Special Research Center for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide 5005, Australia

³ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP), Department of Physics, University of Adelaide, Adelaide, South Australia 5005, Australia

Outline

- 2 Partial Wave Mixing in HEFT
- 3 Example of Isospin-2 $\pi\pi$ Scattering

Observables are different in experiments and lattice

- Experiments: Scattering in the infinite volume
 - Quantum states: Scattering states
 - Observables: Scattering observables like phase shifts $\delta_l(E)$

- Lattice: Scattering in a finite periodic box
 - Quantum states: Bound states
 - Observables: Finite volume spectra $E_n(L)$

Symmetry is different in experiments and lattice

- **Experiments**: Spherical symmetry \rightarrow Rotation group: O(3)
 - Phase shifts $\delta_l(E)$ are classified by the irreps l^{\pm} of O(3)
 - \bullet Irreps of O(3): $0^\pm,\,1^\pm,\,2^\pm,\,\cdots$

Irreducible representations

- \bullet Lattice: Cubic symmetry \rightarrow Cubic group: O_h
 - Spectra $E_n(\Gamma, L)$ are classified by the irreps Γ of O_h
 - $\bullet~\mbox{Irreps}$ of $O_h : \, \mathbf{A_1^\pm}, \, \mathbf{A_2^\pm}, \, \mathbf{E^\pm}, \, \mathbf{T_1^\pm}, \, \mathbf{T_2^\pm}.$

Symmetry is different in experiments and lattice

- O_h is a subgroup of O(3)
- The irreps of O(3) can be reduced into the irreps of O_h
- For each l, we have $m \to (\Gamma, f, \alpha)$
 - Γ denotes the irrep of O_{h}
 - f counts the number of Γ in the l (It's always 1 for $l \leq 4$)
 - α counts the dimension of Γ

$$\begin{aligned} \mathbf{0}^+ &= \mathbf{A}_1^+ \\ \mathbf{1}^- &= \mathbf{T}_1^- \\ \mathbf{2}^+ &= \mathbf{E}^+ \oplus \mathbf{T}_2^+ \\ \mathbf{3}^- &= \mathbf{A}_2^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- \\ \mathbf{4}^+ &= \mathbf{A}_1^+ \oplus \mathbf{E}^+ \oplus \mathbf{T}_1^+ \oplus \mathbf{T}_2^+ \end{aligned}$$

What is partial wave mixing

- Use l_{cut} to ignore higher partial wave $(l > l_{\text{cut}})$ contributions
- $l_{cut} = 0$: Only s-wave phase shifts are related to A_1^+ spectra
- $l_{\mathsf{cut}} = 4$: Both s- and g-wave phase shifts are related to $\mathbf{A_1^+}$ spectra
- Partial wave mixing between s- and g-waves.

$$\begin{aligned} \mathbf{0^{+}} &= \mathbf{A_{1}^{+}} \\ \mathbf{1^{-}} &= \mathbf{T_{1}^{-}} \\ \mathbf{2^{+}} &= \mathbf{E^{+}} \oplus \mathbf{T_{2}^{+}} \\ \mathbf{3^{-}} &= \mathbf{A_{2}^{-}} \oplus \mathbf{T_{1}^{-}} \oplus \mathbf{T_{2}^{-}} \\ \mathbf{4^{+}} &= \mathbf{A_{1}^{+}} \oplus \mathbf{E^{+}} \oplus \mathbf{T_{1}^{+}} \oplus \mathbf{T_{2}^{+}} \end{aligned}$$

What is partial wave mixing

- Use l_{cut} to ignore higher partial wave $(l > l_{\text{cut}})$ contributions
- $l_{\text{cut}} = 0$: Only s-wave phase shifts are related to $\mathbf{A_1^+}$ spectra
- $l_{cut} = 4$: Both s- and g-wave phase shifts are related to A_1^+ spectra
- Partial wave mixing between s- and g-waves.

$$\begin{aligned} \mathbf{0}^{+} &= \mathbf{A}_{1}^{+} \\ \mathbf{1}^{-} &= \mathbf{T}_{1}^{-} \\ \mathbf{2}^{+} &= \mathbf{E}^{+} \oplus \mathbf{T}_{2}^{+} \\ \mathbf{3}^{-} &= \mathbf{A}_{2}^{-} \oplus \mathbf{T}_{1}^{-} \oplus \mathbf{T}_{2}^{-} \\ \mathbf{4}^{+} &= \mathbf{A}_{1}^{+} \oplus \mathbf{E}^{+} \oplus \mathbf{T}_{1}^{+} \oplus \mathbf{T}_{2}^{+} \end{aligned}$$

Model independent relation: Lüscher's formula

- $\delta_l(E)$ and $E_n(\Gamma,L)$ are related model independently (Up to exponentially small corrections)
- It's a one-to-one relation only in the simplest cases
 - $l_{\rm cut} = 0$: $E_n^{\rm lat}({f A}_1^+,L) = 100~{\rm MeV}$
 - ightarrow equation of $\delta_0(100\,{\rm MeV})$
 - $\bullet \ \to \delta_0(100 \ {\rm MeV})$
- It's not one-to-one in general cases
 - $l_{\text{cut}} = 4$: $E_n^{\text{lat}}(\mathbf{A_1^+}, L) = 100 \text{ MeV}$
 - ightarrow equation of $\delta_0(100~{\rm MeV})$ and $\delta_4(100~{\rm MeV})$
 - Need more than one energy levels with the same energy value
- Most data fail to find their partners to apply Lüscher's formula
- Fitting process is necessary (to relate quantities at different energy values)
- Normal approach: Parametrize the phase shifts

M. Lüscher: Commun. Math. Phys., 105:153-188, 1986. Commun. Math. Phys., 104:177, 1986. Nucl. Phys., B354:531-578, 1991.

What is Hamiltonian effective field theory (HEFT)

Build the infinite and finite volume Hamiltonians for a system

Infinite:
$$\hat{H} = \hat{H}_0 + \hat{V}$$

Finite: $\hat{H}_L = \hat{H}_{0L} + \hat{V}_L$

• Parametrize the potentials of the Hamiltonians

$$\hat{V} \leftarrow \mathsf{parameters}
ightarrow \hat{V}_L$$

- Fit the eigenvalues of \hat{H}_L to $E_n^{\mathsf{lat}}(\Gamma,L)$ to set the parameters
- Use \hat{H} to calculate $\delta_l(E)$, which are potential model independent
- Use \hat{H} and \hat{H}_L to study the system

Outline

- Background and Motivation
- Partial Wave Mixing in HEFT
- 3 Example of Isospin-2 $\pi\pi$ Scattering

The infinite volume potential

- $\bullet\,$ We start with the plane wave states: $|{\bf k}\rangle$
- We should deal with $|k;l,m
 angle:=\int d\Omega_{\hat{\bf k}}\,Y_{lm}(\hat{\bf k})\,\,|{f k}
 angle$
- Rotational invariance only allows interaction like $|k';l,m
 angle\,\langle k;l,m|$
- Wigner-Eckart theorem \rightarrow different m correspond to the same v_l

$$\hat{V} = \int \frac{k^{\prime 2} dk'}{(2\pi)^3} \int \frac{k^2 dk}{(2\pi)^3} \sum_{l,m} v_l(k',k) |k';l,m\rangle \langle k;l,m\rangle$$

How does potential change from infinite to finite volume

$$\begin{split} \hat{V} &= \int \frac{k'^2 \, dk'}{(2\pi)^3} \int \frac{k^2 \, dk}{(2\pi)^3} \sum_{l,m} v_l(k',k) \, |k';l,m\rangle \, \langle k;l,m| \\ \bullet \ \mathbf{k} &\to \frac{2\pi}{L} \mathbf{n} \qquad \int_0^\infty \frac{k^2 \, dk}{(2\pi)^3} \to \sum_{N=0}^\infty \qquad N \text{ denotes } |\mathbf{n}|^2 \\ \bullet \ v_l(k',k) &\to \tilde{v}_l(k_{N'},k_N) := \frac{v_l(k_{N'},k_N)}{4\pi L^3} \qquad k_N \text{ denotes } \frac{2\pi}{L} \sqrt{N} \\ \bullet \ |k;l,m\rangle &:= \int d\Omega_{\hat{\mathbf{k}}} \, Y_{lm}(\hat{\mathbf{k}}) \, |\mathbf{k}\rangle \\ &\implies \qquad |N;l,m\rangle := \sqrt{4\pi} \sum_{|\mathbf{n}|^2=N} Y_{lm}(\hat{\mathbf{n}}) \, |\mathbf{n}\rangle \end{split}$$

 $\hat{V}_L = \sum_{N'} \sum_{N} \sum_{l,m} \tilde{v}_l(k_{N'}, k_N) |N'; l, m\rangle \langle N; l, m|$

How does potential change from infinite to finite volume

$$\begin{split} \hat{V} &= \int \frac{k'^2 \, dk'}{(2\pi)^3} \int \frac{k^2 \, dk}{(2\pi)^3} \sum_{l,m} v_l(k',k) \, |k';l,m\rangle \, \langle k;l,m| \\ \bullet \ \mathbf{k} &\to \frac{2\pi}{L} \mathbf{n} \qquad \int_0^\infty \frac{k^2 \, dk}{(2\pi)^3} \to \sum_{N=0}^\infty \qquad N \text{ denotes } |\mathbf{n}|^2 \\ \bullet \ v_l(k',k) &\to \tilde{v}_l(k_{N'},k_N) := \frac{v_l(k_{N'},k_N)}{4\pi L^3} \qquad k_N \text{ denotes } \frac{2\pi}{L} \sqrt{N} \\ \bullet \ |k;l,m\rangle &:= \int d\Omega_{\hat{\mathbf{k}}} \, Y_{lm}(\hat{\mathbf{k}}) \, |\mathbf{k}\rangle \\ &\implies \qquad |N;l,m\rangle := \sqrt{4\pi} \sum_{|\mathbf{n}|^2=N} Y_{lm}(\hat{\mathbf{n}}) \, |\mathbf{n}\rangle \end{split}$$

 $\hat{V}_L = \sum_{N'} \sum_{N} \sum_{l,m} \tilde{v}_l(k_{N'},k_N) \ket{N';l,m} \langle N;l,m|$

How does potential change from infinite to finite volume

$$\hat{V} = \int \frac{k'^2 dk'}{(2\pi)^3} \int \frac{k^2 dk}{(2\pi)^3} \sum_{l,m} v_l(k',k) |k';l,m\rangle \langle k;l,m|$$
• $\mathbf{k} \to \frac{2\pi}{L} \mathbf{n}$

$$\int_0^\infty \frac{k^2 dk}{(2\pi)^3} \to \sum_{N=0}^\infty N \text{ denotes } |\mathbf{n}|^2$$
• $v_l(k',k) \to \tilde{v}_l(k_{NL},k_N) := \frac{v_l(k_{NL},k_N)}{k_{NL}}$

$$k_N \text{ denotes } \frac{2\pi}{2\pi} \sqrt{k}$$

•
$$v_l(k',k) \rightarrow \tilde{v}_l(k_{N'},k_N) := \frac{v_l(k_{N'},k_N)}{4\pi L^3}$$
 k_N denotes $\frac{2\pi}{L}\sqrt{N}$

•
$$|k;l,m\rangle := \int d\Omega_{\hat{\mathbf{k}}} Y_{lm}(\hat{\mathbf{k}}) |\mathbf{k}\rangle$$

 $\implies |N;l,m\rangle := \sqrt{4\pi} \sum_{|\mathbf{n}|^2 = N} Y_{lm}(\hat{\mathbf{n}}) |\mathbf{n}\rangle$

$$\hat{V}_L = \sum_{N'} \sum_{N} \sum_{l,m} \tilde{v}_l(k_{N'},k_N) \ket{N';l,m} ig N;l,m$$

How are partial waves mixed

$$\hat{V}_{L} = \sum_{N'} \sum_{N} \sum_{l,m} \tilde{v}_{l}(k_{N'}, k_{N}) |N'; l, m\rangle \langle N; l, m|$$

- (l,m) is no longer a good quantum number in the finite volume
- $|N;l,m\rangle$ belong to the reducible representations of $O_{\rm h}$
- $|N;l,m\rangle$ have components of states belonging to the irreps of $O_{\rm h}$

$$\begin{split} \mathbf{0}^+ &= \mathbf{A}_1^+ \\ \mathbf{1}^- &= \mathbf{T}_1^- \\ \mathbf{2}^+ &= \mathbf{E}^+ \oplus \mathbf{T}_2^+ \\ \mathbf{3}^- &= \mathbf{A}_2^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- \\ \mathbf{4}^+ &= \mathbf{A}_1^+ \oplus \mathbf{E}^+ \oplus \mathbf{T}_1^+ \oplus \mathbf{T}_2^+ \end{split}$$

- v_l are coupling to those states, hence coupling to the spectra of those irreps
- ullet $\mathbf{0}^+$ and $\mathbf{4}^+$ can be mixed in \mathbf{A}_1^+

Yan Li et al.

How are partial waves mixed

• The infinite volume states |k;l,m
angle are orthogonal to each other

$$\langle k'; l', m'|k; l, m \rangle \propto \int d\Omega_{\hat{\mathbf{k}}} Y^*_{l'm'}(\hat{\mathbf{k}}) Y_{lm}(\hat{\mathbf{k}}) = \delta_{l',l} \delta_{m',m}$$

 $\bullet\,$ The finite volume states $|N;l,m\rangle$ are not

$$\langle N'; l', m' | N; l, m \rangle = 4\pi \sum_{|\mathbf{n}|^2 = N} Y_{l'm'}^*(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}})$$

• $|N;l,m\rangle$ with different (l,m) can contain an overlap of their components \Longrightarrow they are mixed

•
$$[P_N]_{l',m';l,m} := \langle N; l', m' | N; l, m \rangle = 4\pi \sum_{|\mathbf{n}|^2 = N} Y^*_{l'm'}(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}})$$

•
$$[P_N]_{0,0;0,0} = \langle N; 0, 0 | N; 0, 0 \rangle = \sum_{|\mathbf{n}|^2 = N} \mathbf{1} = C_3(N)$$

• Recovery of spherical symmetry:

$$\begin{split} L &\to \infty \text{ with } \frac{2\pi}{L}\sqrt{N} \text{ fixed } \implies N \to \infty \\ &\sum_{|\mathbf{n}|^2 = N} \to \int d\Omega \implies [P_N]_{l',m';l,m} \to C_3(N)\delta_{l',l}\delta_{m',m} \end{split}$$

s-wav	e	p-wav	/e			d-wave						f-wa	ve							g-wave	9			
(1.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.05	0	0	0	1.75	0	0	0	1.05
0	1.00										-0.94				-1.21									0
0		1.00										1.53												0
0			1.00						-1.21				-0.94											0
0				1.25				1.25										-1.08				-1.08		0
0					0																			0
0						2.50										-1.17				1.40				-1.17
0							0																	0
0				1.25				1.25										-1.08				-1.08		0
0			-1.21						1.46				1.13											0
0										0														0
0	-0.94										0.88				1.13									0
0		1.53										2.33												0
0			-0.94						1.13				0.88											0
0														0										0
0	-1.21										1.13				1.46									0
1.05						-1.17										1.64				1.18				1.64
0																	0							0
0				-1.08				-1.08										0.94				0.94		0
0																			0					0
1.75						1.40										1.18				3.84				1.18
0																					0			0
0				-1.08				-1.08										0.94				0.94		0
0																							0	0
1.05						-1.17										1.64				1.18				1.64)

$$[P_{N=1}]/C_3(1) \qquad C_3(1) = 6$$

$$\begin{split} [P_N]_{l',m';l,m} &:= \langle N; l',m'|N;l,m \rangle = 4\pi \sum_{|\mathbf{n}|^2 = N} Y_{l'm'}^{*}(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}}) \\ 25 \times 25 \text{ matrix ordered as } (l,m) &= (0,0), \ (1,-1), \ (1,0), \ (1,1), \ \cdots, \ (4,4) \end{split}$$

s-wav	s-wave p-wave			d-wave					f-wave							g-wave								
(1.00	· _	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.07	0	0	0	0.11	0	0	0	0.07
0	1.00										-0.06				-0.08									0
0		1.00										0.10												0
0			1.00						-0.08				-0.06											0
0				1.02				0.08										-0.07				-0.09		0
0					0.94														-0.01				0.03	0
0						1.10										-0.09				0.10				-0.09
0							0.94										0.03				-0.01			0
0				0.08				1.02										-0.09				-0.07		0
0			-0.08						1.03				0.09											0
0										0.94				-0.03										0
0	-0.06										0.98				0.09									0
0		0.10										1.10												0
0			-0.06						0.09				0.98											0
0										-0.03				0.94										0
0	-0.08										0.09				1.03									0
0.07						-0.09										1.04				0.11				0.20
0							0.03										0.93				-0.04			0
0				-0.07				-0.09										1.03				0.08		0
0					-0.01														0.85				-0.04	0
0.11						0.10										0.11				1.30				0.11
0							-0.01										-0.04				0.85			0
0				-0.09				-0.07										0.08				1.03		0
0					0.03														-0.04				0.93	0
0.07						-0.09										0.20				0.11				1.04)

$$[P_{N=581}]/C_3(581)$$
 $C_3(581) = 336$

$$\begin{split} [P_N]_{l',m';l,m} &:= \langle N; l',m'|N;l,m \rangle = 4\pi \sum_{|\mathbf{n}|^2 = N} Y_{l'm'}^{*}(\hat{\mathbf{n}})Y_{lm}(\hat{\mathbf{n}}) \\ 25 \times 25 \text{ matrix ordered as } (l,m) &= (0,0), \ (1,-1), \ (1,0), \ (1,1), \ \cdots, \ (4,4) \end{split}$$

s-wave		p-wav	e	_		d-wav	е		_			f-wave				g-wave										
(1.00	6		0	0					0						0	-0.01				-0.02				-0.01		
0	1.00										0.01				0.02									0		
0		1.00										-0.02												0		
0			1.00						0.02				0.01											0		
0				1.00				-0.02										0.01				0.02		0		
0					1.01														0.00				-0.00	0		
0						0.98										0.02				-0.02				0.02		
0							1.01										-0.00				0.00			0		
0				-0.02				1.00										0.02				0.01		0		
0			0.02						0.99				-0.02											0		
0										1.01				0.00										0		
0	0.01										1.00				-0.02									0		
0		-0.02										0.98												0		
0			0.01						-0.02				1.00											0		
0										0.00				1.01										0		
0	0.02										-0.02				0.99									0		
-0.01						0.02										0.99				-0.02				-0.03		
0							-0.00										1.01				0.00			0		
0				0.01				0.02										1.00				-0.01		0		
0					0.00														1.02				0.00	0		
-0.02						-0.02										-0.02				0.95				-0.02		
0							0.00										0.00				1.02			0		
0				0.02				0.01										-0.01				1.00		0		
0					-0.00														0.00				1.01	0		
l-0.01						0.02										-0.03				-0.02				0.99		

$$[P_{N=941}]/C_3(941)$$
 $C_3(941) = 552$

$$\begin{split} [P_N]_{l',m';l,m} &:= \langle N; l',m'|N;l,m \rangle = 4\pi \sum_{|\mathbf{n}|^2 = N} Y_{l'm'}^{*}(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}}) \\ 25 \times 25 \text{ matrix ordered as } (l,m) &= (0,0), \ (1,-1), \ (1,0), \ (1,1), \ \cdots, \ (4,4) \end{split}$$

• P-Matrix also respects the cubic symmetry

•
$$m \to (\Gamma, f, \alpha) \Longrightarrow |N; l, m\rangle \to |N, l; \Gamma, f, \alpha\rangle$$

 $|N, l; \Gamma, f, \alpha\rangle = \sum_{m} [C_l]_{\Gamma, f, \alpha; m} |N; l, m\rangle$

• P-Matrix in new basis is obtained through a unitary transformation

- The transformation matrix is given by $[C] = \mathsf{diag}([C_0],\,[C_1],\,\cdots)$
- P-Matrix will be block diagonal according to the irreps of $O_{\rm h}$

$$[C][P_N][C]^{\dagger} \to \delta_{\Gamma',\Gamma} \delta_{\alpha',\alpha} \langle N, l'; \Gamma, f', \alpha | N, l; \Gamma, f, \alpha \rangle$$

How is the dimension of the Hamiltonian matrix reduced

• Original basis
$$|\mathbf{n}
angle$$
: $\sum_{N=0}^{N_{\mathsf{cut}}=600}C_3(N)\sim 60,000$

• Basis
$$|N;l,m
angle$$
 with $l_{\rm cut}=4$: $\sum_{N=0}^{600}25\sim 600 imes 25$

• Basis
$$|N, l; \Gamma = \mathbf{A_1^+}, f, \alpha \rangle$$
: $\sum_{N=0}^{600} 2 \sim 600 \times 2$

• Orthonormalization needs the inner products——P-Matrix

Outline

- Background and Motivation
- 2 Partial Wave Mixing in HEFT
- 3 Example of Isospin-2 $\pi\pi$ Scattering

4 Summary

The process

- $l_{\rm cut}=4$, only s-, d- and g-waves are present
- Separable potential model:

$$v_l(p,k) = f_l(p)G_lf_l(k)$$

 $f_l(k) \sim rac{(d_l imes k)^l}{(1 + (d_l imes k)^2)^{l/2+2}}$

- 6 parameters: $G_0, G_2, G_4, d_0, d_2, d_4$
- Dimensions of Hamiltonians $(N_{cut} = 600)$:

$$\mathbf{A}_1^+: 923 \quad \mathbf{E}^+: 965 \quad \mathbf{T}_2^+: 963$$

• The fitted data: 11 energy levels

The results

Components of eigenstates	Volume dependent spectra	Phase shifts with errors					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 10 10 10 10 10 10 10 10 10 1						
• Fitting \rightarrow Parameters $\rightarrow \hat{H}$ and \hat{H}_L • $\hat{H} \rightarrow \delta_l(E)$ • $\hat{H}_L \rightarrow E_n(\Gamma, L)$ • $\hat{H}_L \rightarrow$ Eigenstates	N = 2 N = 2 N = 2 N = 1 N = 2 N = 1 N = 2 N = 1 N = 2 N = 1 N = 2 N						

Outline

- Background and Motivation
- 2 Partial Wave Mixing in HEFT
- 3 Example of Isospin-2 $\pi\pi$ Scattering

Summary

- Partial wave mixing is discussed in HEFT
 - How it happens in the viewpoint of HEFT
 - P-Matrix is defined to measure the degree of partial wave mixing
 - The dimension of the Hamiltonian can be highly reduced
- Example of isospin-2 $\pi\pi$ scattering is discussed

ACKNOWLEDGMENTS

Finite-volume energy levels taken from [PRD 86, 034031 (2012), Jozef J. Dudek et al.] were provided by the Hadron Spectrum Collaboration – no endorsement on their part of the analysis presented in the current paper should be assumed.

Thank you!

Backup

 $|\mathbf{n}\rangle$

$$\begin{split} N &= |\mathbf{n}|^2 \\ |\mathbf{n}\rangle \\ |N;l,m\rangle \end{split}$$
0 1 $\mathbf{2}$ 3 . . . $igg| \sum_{\hat{\mathbf{n}}} Y_{lm}(\hat{\mathbf{n}}) \ket{\mathbf{n}} \ |N;l,m
angle$ 1 1 6 12 8 . . . ∞ ∞ ∞ . . .

 $l = 0, 1, 2, \cdots$ $m = -l, \cdots, +l$

$$\begin{split} N &= 0: \quad (0,0,0) \\ N &= 1: \quad (+1,0,0) \quad (0,+1,0) \quad (0,0,+1) \\ &\quad (-1,0,0) \quad (0,-1,0) \quad (0,0,-1) \end{split}$$

.

 $|\mathbf{n}
angle$

	$N = \mathbf{n} ^2$	0	1	2	3	
	$ \mathbf{n}\rangle$	1	6	12	8	• • •
$\sum Y_{lm}(\hat{\mathbf{n}}) \mathbf{n}\rangle$	$ N;l,m\rangle$	1	∞	∞	∞	
$\hat{\mathbf{n}}$	with l_{cut}	1	$(l_{cut}+1)^2$	$(l_{cut}+1)^2$	$(l_{cut}+1)^2$	
$ \stackrel{*}{N};l,m angle$						

.

$$\sum_{l=0}^{l_{\rm cut}} (2l{+}1) = (l_{\rm cut}{+}1)^2 = 25 \text{ for } l_{\rm cut} = 4$$

Dimension: big number
$$\to (l_{\rm cut}+1)^2 \times N_{\rm cut}+1$$

$$\sim 25 \times 600 ~{\rm for}~ l_{\rm cut}=4,~ N_{\rm cut}=600$$

 $|\mathbf{n}\rangle$

 $ert \sum_{\hat{\mathbf{n}}} Y_{lm}(\hat{\mathbf{n}}) \ket{\mathbf{n}}$ $|N;l,m\rangle$ $\sum_{m} [C_l]_{\Gamma, f, \alpha; m} | N; l, m \rangle$ $\mathbf{0}^+ = \mathbf{A}_1^+,$ $F_{\rm cut}(\Gamma = \mathbf{A}_1^+, l_{\rm cut} = 4) = 2$ $1^{-} = T_{1}^{-}$, $|N,l;\Gamma,f,\alpha\rangle$ $\mathbf{2}^+ = \mathbf{E}^+ \oplus \mathbf{T}_2^+$, $\mathbf{3}^{-}=\mathbf{A}_{2}^{-}\oplus\mathbf{T}_{1}^{-}\oplus\mathbf{T}_{2}^{-},$ $\mathbf{4}^{+} = \mathbf{A}_{1}^{+} \oplus \mathbf{E}^{+} \oplus \mathbf{T}_{1}^{+} \oplus \mathbf{T}_{2}^{+},$

 $|\mathbf{n}\rangle$

$$\begin{array}{|c|c|c|c|c|} & & & \frac{N = |\mathbf{n}|^2 & 0 & 1 & 2 & 3 & \cdots}{|\mathbf{n}\rangle & 1 & 6 & 12 & 8 & \cdots} \\ \hline & & |\mathbf{n}\rangle & & 1 & 0 & 0 & \infty & \infty & \cdots \\ & & |N;l,m\rangle & & 1 & \infty & \infty & \infty & \cdots \\ & & & \text{with } l_{\text{cut}} & 1 & (l_{\text{cut}}+1)^2 & (l_{\text{cut}}+1)^2 & (l_{\text{cut}}+1)^2 & \cdots \\ & & |N,l;\Gamma,f,\alpha\rangle & & 1 & F_{\text{cut}} & F_{\text{cut}} & F_{\text{cut}} & \cdots \\ & & & |N,l;\Gamma,f,\alpha\rangle & & \mathbf{0^+} = \mathbf{A}_1^+ , & F_{\text{cut}}(\Gamma = \mathbf{A}_1^+, l_{\text{cut}} = 4) = 2 \\ & & & 1^- = \mathbf{T}_1^- , \\ & & & 1^- = \mathbf{T}_1^- , \\ & & & 1^- = \mathbf{T}_2^- , \\ & & & 1^- = \mathbf{A}_2^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 4^+ = \mathbf{A}_1^+ \oplus \mathbf{E}^+ \oplus \mathbf{T}_1^+ \oplus \mathbf{T}_2^+ , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{T}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{T}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- , \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_2^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- = \mathbf{A}_1^- \oplus \mathbf{A}_2^- & \\ & & & & & 1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- \oplus \mathbf{A}_2^- & \\ & & & & & 1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- \oplus \mathbf{A}_2^- & \\ & & & & 1^- \oplus \mathbf{A}_2^$$

$$\begin{split} |\mathbf{n}\rangle & \hat{V}_{L} = \sum_{\mathbf{n}',\mathbf{n}\in\mathbb{Z}^{3}} V_{L}(\frac{2\pi\mathbf{n}'}{L},\frac{2\pi\mathbf{n}}{L}) |\mathbf{n}'\rangle \langle \mathbf{n}| = \sum_{\mathbf{n}',\mathbf{n}\in\mathbb{Z}^{3}} L^{-3}V(\frac{2\pi\mathbf{n}'}{L},\frac{2\pi\mathbf{n}}{L}) |\mathbf{n}'\rangle \langle \mathbf{n}| \\ & \int_{\hat{\mathbf{n}}} Y_{lm}(\hat{\mathbf{n}}) |\mathbf{n}\rangle \\ |N;l,m\rangle & \hat{V}_{L} = \sum_{N',N} \sum_{l} L^{-3} v_{l}(k_{N'},k_{N}) \sum_{m} |N';l,m\rangle \langle N;l,m| \\ & \int_{m} [C_{l}]_{\Gamma,f,\alpha;m} |N;l,m\rangle \\ |N,l;\Gamma,f,\alpha\rangle & \hat{V}_{L} = \sum_{N',N} \sum_{l} L^{-3} v_{l}(k_{N'},k_{N}) \sum_{\Gamma,f,\alpha} |N',l;\Gamma,f,\alpha\rangle \langle N,l;\Gamma,f,\alpha| \\ & \int_{m} Orthonormalization \\ |N,\Gamma,\alpha;F\rangle & \hat{V}_{L} = \sum_{N',N} \sum_{\Gamma,F',F} v_{\Gamma,F',F}(k_{N'},k_{N}) \sum_{\alpha} |N',\Gamma,\alpha;F'\rangle \langle N,\Gamma,\alpha;F| \end{split}$$

 $|\mathbf{n}\rangle$ $[P_N]_{l',m';l,m} := \langle N; l', m' | N; l, m \rangle = \sum Y_{l'm'}^*(\hat{\mathbf{n}}) Y_{lm}(\hat{\mathbf{n}})$ $\sum_{\hat{\mathbf{n}}}Y_{lm}(\hat{\mathbf{n}})\left|\mathbf{n}\right\rangle$ 2×2 $\int_{m} \sum_{m} [C_l]_{\Gamma, f, \alpha; m} |N; l, m \rangle \qquad \begin{pmatrix} 25 \times 25 \\ \text{for } l_{\text{cut}} = 4 \end{pmatrix} \xrightarrow{[C]^{\dagger}[P][C]} \begin{pmatrix} \downarrow \\ I \xrightarrow{[A^{\mp i}]_{1}} \\ I \xrightarrow{[A^{\pm i}]_{1}} \\ I \xrightarrow{[A^$ $|N;l,m\rangle$ $|N,l;\Gamma,f,\alpha\rangle$ Orthonormalization $[P_{N;\Gamma,\alpha}]_{l',f';l,f} := \langle N, l'; \Gamma, f', \alpha | N, l; \Gamma, f, \alpha \rangle$ $= \sum [C_{l'}]^*_{\Gamma,f',\alpha;m'} [P_N]_{l',m';l,m} [C_l]_{\Gamma,f,\alpha;m}$ m'.m $|N, \Gamma, \alpha; F\rangle$ Combination Coefficients: $[G_{l;\Gamma}]_{N',F';N,F} = \sum_{i} \langle N',\Gamma,\alpha;F'|N';l,\Gamma,f,\alpha\rangle \langle N;l,\Gamma,f,\alpha|N,\Gamma,\alpha;F\rangle$