The role of X(4140) and X(4160) in the reaction of $B \rightarrow J/\psi \phi K$

En Wang Zhengzhou University Collaborators: Ju-Jun Xie, Li-Sheng Geng, Eulogio Oset GuiLin@Aug. 20, 2018

outline

- Motivation
- The reaction of $B^+ \rightarrow J/\psi \phi K^+$
- Summary

Charmonium-like states

			γ γγγγγγγ γ γγγγγγγγγ ē		
X(3872)	Y(4008)	X(3940)	X(3915)	<i>Z_c</i> (3885)	
Y(3940)	Y(4260)	X(4160)	Z(3930)	Z _c (3900)	
Z ⁺ (4430)	Y(4220)		X(4350)	Z _c (4020)	
Z ⁺ (4050)	Y(4320)			Z _c (4025)	
Z ⁺ (4250)	Y(4360)			$Z_b(10610)$	
Y(4140)	Y(4390)			$Z_b(10650)$	
Y(4274)	Y(4630)				
Z ⁺ (4200)	Y(4660)		_		
Z ⁺ (4240)			Н	.X.Chen,W. Cher	,X.Liu, S.L. Zhu,
X(3823)			P	hys.Rept. 639 (2	16) 1-121
$X_c(3250)$					
<i>P</i> _c (4380)					
$P_{c}(4450)$					

X(4140)

TABLE I: The experimental measurement of the X(4140).

Experment	Mass	Width	Significance	Year
CDF [1]	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0}\pm3.7$	3.8σ	2009
CMS [2]	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$	5.0σ	2014
D0 [3]	$4159.0 \pm 4.3 \pm 6.6$	$20 \pm 13^{+3}_{-8}$	3.0σ	2014
D0 [4]	$4152.5 \pm 1.7^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$	4.7σ	2015
CDF [5]	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-6.1} \pm 2.5$	5.0σ	2011
LHCb $[12]$	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	8.4σ	2017

Before 2015, LHCb and Babar have not confirmed this state.

The deduced width of X(4140), 83 ± 21 MeV, larger than the former experimental measurements, and also the average of the PDG.

The LHCb measurement

4 X states are observed. X(4140): J^{PC}=1⁺⁺

Width=83±21 MeV

J^{PC}	<i>X</i> (4140)	X(4274)	X(4500)	X(4700)
0++	10.3σ	7.8σ	Preferred	Preferred
0^{-+}	12.5σ	7.0σ	8.1σ	8.2σ
1^{++}	Preferred	Preferred	5.2σ	4.9σ
1^{-+}	10.4σ	6.4σ	6.5σ	8.3σ
2^{++}	7.6σ	7.2σ	5.6σ	6.8σ
2-+	9.6 <i>σ</i>	6.4σ	6.5σ	6.3 <i>σ</i>

PRD95,2017,PRL118,2017

The LHCb measurement

Molecular state: 0⁺⁺ or 2⁺⁺

X. Liu, S.L. Zhu, PRD80(2009), G.J. Ding, EPJC64(2009), J.R. Zhang, M.Q.Huang, JPG37(2010),

>Tetraquark:

F.Stancu, JPG37(2010), Z.G.Wang, IJMPA30(2015), EPJC79, 72(2019)

>Hybrid state:

Mahajan, PLB679 (2009), Z.G. Wang, EPJC63 (2009)

Rescattering effect:

X. Liu,PLB680(2009)

X_{c1}(3P): (with a small width~20 MeV)

D.Y. Chen, EPJC76,671(2016), Poster by En Wang,

$D_s^*\overline{D}_s^*$ molecule

PHYSICAL REVIEW D 80, 114013 (2009)

Y(3940), Z(3930), and the X(4160) as dynamically generated resonances from the vector-vector interaction

R. Molina¹ and E. Oset¹

¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain (Received 24 July 2009; revised manuscript received 28 October 2009; published 15 December 2009)

Vector-vector exchange within local hidden gauge approach

	TABL	E V. Couplings g_i in	n units of MeV for J	I = 0, J = 2 (second	d pole).
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$		$\sqrt{s_{\text{pole}}} = 41$	$169 + i66, I^G[J^{PC}] =$	$= 0^{+}[2^{++}]$	
$ ho ho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - i2441
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$	$\phi \phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	ωφ
$\phi J/\psi(4110), \qquad \omega \phi(1802),$	1257 + i2866	2681 + i940	-866 + i2752	-2617 - <i>i</i> 5151	1012 + i1522

$D_s^*\overline{D}_s^*$ molecule

PHYS Y(3940), Z(3930), and th from	ICAL REVIEW D e <i>X</i> (4160) as d the vector-vec	80, 114013 (2009) Iynamically gen tor interaction	nerated resona	ances	
$X(4160)$ I^{G}	$(J^{PC}) = ?$	$P^{?}(?^{??})$			
Seen by PAKHLOV 20	08 in $e^+~e^- ightarrow$.	$J/\psi X$, $X ightarrow D^* \overline{D}$	\overline{D}^*		
• Vector- X(4160) MASS				4156^{+29}_{-25} MeV	-
X(4160) WIDTH				$139^{+110}_{-60}~{ m MeV}$	pole).
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$		$\sqrt{s_{\text{pole}}} = 41$	$69 + i66, I^G[J^{PC}] =$	= 0 ⁺ [2 ⁺⁺]	
$\rho \rho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - i2441
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$ $\phi J/\psi(4116), \omega \phi(1802),$	$\frac{\phi \phi}{1257 + i2866}$	$\frac{J/\psi J/\psi}{2681 + i940}$	$\omega J/\psi$ -866 + i2752	$\phi J/\psi$ -2617 - <i>i</i> 5151	$\frac{\omega\phi}{1012 + i1522}$

PHYSICAL REVIEW D 80, 114013 (2009)

Y(3940), Z(3930), and the X(4160) as dynamically generated resonances from the vector-vector interaction

The $D_s^*\overline{D}_s^*$ molecule with 2⁺⁺ was associated to the X(4160), not the X(4140).

Vector-vector exchange within local hidden gauge approach

	TABL	E V. Couplings g_i in	n units of MeV for I	J = 0, J = 2 (second	l pole).
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$		$\sqrt{s_{\text{pole}}} = 41$	$169 + i66, I^G[J^{PC}] =$	= 0 ⁺ [2 ⁺⁺]	
$ ho ho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega \omega$ 3 - i2441
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$ $\phi J/\psi(4116), \omega \phi(1802).$	$\phi\phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$
$\varphi v \gamma \varphi (110), \qquad \omega \varphi (1002),$	1257 + i2866	2681 + i940	-866 + i2752	-2617 - i5151	1012 + i1522

$D_s^*\overline{D}_s^*$ molecule, X(4160)

The comparison made above hints a possible $D_s^* \overline{D}_s^*$ molecule-like nature with quantum numbers $J^{PC} = 2^{++}$ for X(4160) However, our work also implies the existence of a $J^{PC} = 0^{++}$

THE WEAT

How to distinguish the molecule state?

- It decays into a heavy quarkonium plus a light meson with nozero isospin, for instance, Zc, Zb.
- For the molecular states that couple to several hadronhadron channels, and has the main component, channel A, one of the defining features is that, one can find a strong and unexpected cusp at the threshold of the channel A in one of the weakly coupled channels.
- Dai, Dias, Oset, EPJC78(2018)
- Ewang, JJXie, LSGeng, Oset, PRD97(2019); 1806.05113
- Dai,GYWang,Xchen,Ewang,DMLi,Oset,1808.10371

The reaction of B+ \rightarrow J/ $\psi\phi$ K+ PRD97(2018)014017

The reaction of $B^- \rightarrow J/\psi \phi K^-$

External emission

 B^-

Internal conversion

The reaction of $B^- \rightarrow J/\psi \phi K^-$

The X(4160) is JPC=2⁺⁺ state with L=0 in $D_s^* \overline{D}_s^*$. We need a D-wave in the K⁻ to match the angular momentum in the reaction.

$$t_{B^- \to K^- D_s^* \bar{D}_s^*}^{\text{tree}} = A\left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} \vec{k}^2 \vec{\epsilon} \cdot \vec{\epsilon}'\right),$$

where $\vec{\epsilon}$, $\vec{\epsilon}'$ are the polarization vectors of D_s^* and \vec{D}_s^* , \vec{k} is the K^- momentum in the $D_s^* \bar{D}_s^*$ rest frame, A is an unknown factor that will be fitted to the data.

The reaction of $B^- \rightarrow J/\psi \phi K^-$

The reaction of $B^- \to J/\psi \phi K^-$

The contribution of X(4160)

• G is the loop function, with the cut off method,

$$G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

• The transition amplitudes are,

$D^{*}\bar{D}^{*}(4017)$,	$D_{s}^{*}\bar{D}_{s}^{*}(4225)$	5), $K^*\bar{K}^*(1783)$,
ho ho	(1551), ωω	(1565),
$\phi \phi$ (2039),	$J/\psi J/\psi$ (6194	4), $\omega J/\psi$ (3880),
$\phi J/$	ψ(4116), ω	φ(1802),

$$t_{D_s^* \bar{D}_s^* o D_s^* \bar{D}_s^*} = rac{g_{D_s^* \bar{D}_s^*}^2}{M_{
m inv}^2 (D_s^* \bar{D}_s^*) - M_X^2 + iM_X \Gamma_X},$$

 $t_{D_s^* \bar{D}_s^* o J/\psi \phi} = rac{g_{D_s^* \bar{D}_s^*} g_{J/\psi \phi}}{M_{
m inv}^2 (J/\psi \phi) - M_X^2 + iM_X \Gamma_X},$

$\sqrt{s_{\text{pole}}} = 4169$	$+ i66, I^{G}[J^{PC}] =$	0+[0++]	
V For		0'[2'']	
$\begin{array}{ccc} D^*\bar{D}^* & D^*_s\bar{D}^*_s \\ 1225 - i490 & 18927 - i5524 \end{array}$	$K^*\bar{K}^*$ $-82+i30$	$\frac{ ho ho}{70+i20}$	$\omega \omega$ 3 - <i>i</i> 2441
$\phi\phi$ $J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	ωφ
1257 + i2866 $2681 + i940$ -	866 + <i>i</i> 2752	-2617 - <i>i</i> 5151	1012 + i1522

The contribution of X(4160)

 $K^*\bar{K}^*(1783)$,

 $\omega J/\psi$ (3880),

 $D_{s}^{*}\bar{D}_{s}^{*}(4225),$

 $J/\psi J/\psi$ (6194),

 $\omega\omega(1565),$

 $\omega\phi(1802),$

• G is the loop function, with the cut off method,

$$G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

The transition amplitudes are,

$$T_{D_s^*\bar{D}_s^*\to D_s^*\bar{D}_s^*} = \frac{g_{D_s^*\bar{D}_s^*}^2}{M_{\text{inv}}^2(D_s^*\bar{D}_s^*) - M_X^2 + iM_X\Gamma_X}, \quad \text{with } \Gamma_0 \text{ accounting for the channels of Ref. [23] not explicitly considered here (we shall fit that to the data as discussed above), and
$$T_{D_s^*\bar{D}_s^*\to J/\psi\phi} = \frac{g_{D_s^*\bar{D}_s^*}g_{J/\psi\phi}}{M_{\text{inv}}^2(J/\psi\phi) - M_X^2 + iM_X\Gamma_X}, \quad \text{Flatt\acute{e} effect} \quad \Gamma_{J/\psi\phi} = \frac{|g_{J/\psi\phi}|^2}{8\pi M_X^2}\tilde{p}_{\phi}, \quad \Gamma_{D_s^*\bar{D}_s^*} = \frac{|g_{D_s^*\bar{D}_s^*}|^2}{8\pi M_X^2}\tilde{p}_{D_s^*}\Theta(M_{\text{inv}}(D_s^*\bar{D}_s^*) - 2M_{D_s^*}).$$$$

 $D^*\bar{D}^*(4017),$

 $\phi \phi$ (2039),

 $\rho \rho (1551),$

 $\phi J/\psi(4116),$

The contribution of X(4140)

 Since X(4140) is 1⁺⁺, the kaon should be in P-wave, and the operator for P-wave is,

$$(\vec{\epsilon}_{J/\psi} \times \vec{\epsilon}_{\phi}) \cdot \vec{k},$$

$$t_{B^- \to K^- D_s^* \bar{D}_s^*}^{\text{tree}} = L$$

$$-D_s^*\bar{D}_s^* = A\left(\vec{\epsilon}\cdot\vec{k}\vec{\epsilon}'\cdot\vec{k}-\frac{1}{3}\vec{k}^2\vec{\epsilon}\cdot\vec{\epsilon}'\right)$$

$$\frac{d\Gamma}{M_{\rm inv}(D_s^*\bar{D}_s^*)} = \frac{1}{(2\pi)^3} \frac{1}{4M_{B^-}^2} \frac{2}{3} |\vec{k}|^4 |\vec{k}'| \tilde{p}_{D_s^*}|A$$

 $M_{\rm inv}(D_s^*\bar{D}_s^*) \to M_{\rm inv}(J/\psi\phi),$

The substitution:

$$A \to \frac{BM_{X(4140)}^4}{M_{\text{inv}}^2(J/\psi\phi) - M_{X(4140)}^2 + iM_{X(4140)}\Gamma_{X(4140)}}$$

with *B* a parameter to be fitted to the data. $M_{X(4140)} = 4132 \text{ MeV}_{20}$

 $\frac{2}{2}|\vec{k}|^4 \to 2|\vec{k}|^2, \qquad \tilde{p}_{D_s^*} \to \tilde{p}_{\phi},$

Results

- We fit the LHCb data from threshold up to about 4250 MeV.
- 13 data, χ²/dof=15.3/(13-3)=1.39

 $\Gamma_0 = 65.0 \pm 7.1 \text{ MeV}$ (at 68% confidence level), $\Gamma_{J/\psi\phi} \simeq 22.0 \text{ MeV}$ $\Gamma_{X(4160)} \simeq 87.0 \pm 7.1 \text{ MeV}$

X(4160)Seen by PAR	$I^G(J^{PC})$ = $??(??)$ KHLOV 2008 in $e^+ e^- o J/\psi X$, $X o D^*\overline{D}^*$	
X(4160) MAS	S	4156^{+29}_{-25} MeV
X(4160) WID	ГН	139 ⁺¹¹⁰ MeV

Results

- The Flatte effect is visable, as a sharp fall down of the invariant mass distribution above the $D_s^*\overline{D}_s^*$ threshold.
- The lower part of the spectrum can be obtained from the contribution of X(4160) (2⁺⁺) and X(4140)(1⁺⁺, 19 MeV) resonances.
- The cusp of the distribution at the $D_s^*\overline{D}_s^*$ threshold, cannot be accommodated by a Breit-Wigner amplitude, and it indicates that the resonance in that region is tied to the $D_s^*\overline{D}_s^*$ channel.

Results

- There is a peak close to the threshold, which should not be misidentified with a new state, but it is the reflection of the X(4160).
- The strength of the peak is the twice of the one of the X(4140).

- The X(4140) deduced from the $B^+ \rightarrow J/\psi \phi K^+$ by LHCb has a large width 83±21 MeV vs. 19MeV of PDG.
- Many explanations of X(4140): molecular state, hybrid state, tetraquark state.
- X(4160) as the $D_s^* \overline{D}_s^*$ molecule, with J^{PC}=2⁺⁺, large couplings to $D_s^* \overline{D}_s^*$, J/ $\psi \phi$ channels.

- Taking into account the contribution of X(4160) and X(4140), the lower part of the spectrum of LHCb can be well reproduced.
- The cusp of the distribution at the $D_s^*\overline{D}_s^*$ threshold, cannot be accommodated by a Breit-Wigner amplitude, and it indicates that the resonance in that region is tied to the $D_s^*\overline{D}_s^*$ channel.
- We predict the $D_s^* \overline{D}_s^*$ distribution for $B^- \to K^- D_s^* \overline{D}_s^*$ reaction. There is a peak close to the threshold, which is the reflection of the X(4160).

Thanks for your attention!