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O U T L I N E

• Introduction to Strangeness Nuclear Physics

• S=-1 systems

• S=-2 systems

• Summary
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• Nakano-Nishijima-Gell-Mann Formula:  
Q=I3+(B+S)/2  

• S is conserved in strong interaction, but not in weak interaction

• Role of Strangeness in Hadron spectroscopy

• constituent quark mass : mu~md=330 MeV/c2, ms~500 MeV/c2 

• Role of Strangeness in Dense Matter

• nuclear matter (S=0) ⇔ hyperonic matter (S=-∞)
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Observation of 2M○ NS

Nature 467 (2010) 1081-83.
Science 340 (2013) 6131.

Hyperon Puzzle !

Astronomical Observation challenges 
the Standard Nuclear Physics.

Mmax>2M○Mmax<1.5M○

Nuclear Many-Body 
Theory 

 
Hypernuclear Data 

∆E=1 MeV 

YN Scattering Data 

Limited statistics

Core of Neutron Star (NS)  
||

Test ground of High Density Matter

Hyperons should appear !

 
？



M AT T E R  
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A=1 
Quark Confinement
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Nuclear Force from QCD

N. Ishii, S. Aoki & T. Hatsuda,
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�����
Phys. Rev. Lett. 99 (2007) 022001

NN potential from
Nambu-Bethe-Salpeter amplitude

A=2 
Baryon Interactions (Nuclear Force)

SuperNova

Neutron Star

BNS Merger 
→GW170817

通常の原子核

A=∞

Heavy Nuclei ?

Dense Matter Physics

 r-Process Site 

NucleoSynthesis

u, d-quark World

u, d, s-quark world

Ordinary Nuclei

LatticeQCD

HAL QCD Numerical Relativity simulation

KAGRA

25/10/17 Padova 12

GW170817: mass estimation

Moreover, although a neutron star–black hole system is not ruled out, the consistency of 

the mass estimates with the dynamically measured masses of known neutron stars in 

binaries, and their inconsistency with the masses of known black holes in galactic binary 

systems, suggests the source was composed of two neutron stars.

Source-frame chirp mass M = 1.188+0:004
 -0.002

M
sun

The total mass of the system is between 2.73 and 3.29M
sun

 

The individual masses in 0.86- 2.26M
sun

This suggests a BNS as the source of the gravitational-wave signal

post-Newtonian 

(PN) theory

numerical solution 

available 

ringdown perturbation theory or 

numerical solution available 

Chirp Mass estimated from gravitation-

phase (3000 cycles in frequency range 

considered)

Λ、Σハイパー核Λ, Σ Hypernuclei



F A C I L I T I E S  F O R  S N P
• J-PARC ; highest intensity K- beams, (K-,π-), (K-, K+)

• JLab ; high resolution (e, e’K+) spectroscopy (∆E=0.1~0.3 MeV)

• Mainz ; (e, e’K+), decay π spectroscopy (∆E<0.1 MeV)

• GSI : hyper fragments production, π beam

• RHIC STAR & LHC ALICE : “Femtoscopy”, Anti-hypernuclei, 
Lifetime for hyper fragments

• FAIR ; p-bar
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S = - 1  S Y S T E M S
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Fig. 3. World data comparison of 3
!H and 4

!H lifetimes. The combined average is represented by the arrow at the top, 
while the width of the hatched band corresponds to the one standard deviation of the average. The vertical line at 263.2 ps 
with width of ± 2 ps shows the known lifetime of ! hyperon. References to counter experiments is marked by an asterisk. 
Figures are taken from [2] but with difference reference number according to the list of references in the present article.

the binned data of the sideband regions. The binned fitted model at the bin i can be expressed as 
discussed in [1] as:

ModelFiti =

⎧
⎪⎨

⎪⎩

∫

bini

A/(cτ ) exp(−l/(βγ cτ ))dl

⎫
⎪⎬

⎪⎭
· 1/w′

i + Bl[li/(βiγi )] + Bh[li/(βiγi )]

(1)

where A is the normalisation factor of the exponential probability density function, Bl[li/(βiγi )]
and Bh[li/(βiγi )] are the two sideband data sets at bin i. In the bottom panels of Fig. 2, fitted 
model distributions are shown by solid lines together with binned data of the signal region of 
the signal-plus-background data shown by filled circles with error bars. By comparing the two 
distributions, reduced χ2 values of the modelled proper decay time function over the binned
data as χ2 = ∑

bini
(SB[li/(βiγi )] − ModelFiti )2/(SB[li/(βiγi )]) was calculated. They are 0.43 

for !, 1.14 for 3
!H and 0.71 for 4

!H. It has to be emphasised once more here that the deduced 
lifetime values have been obtained by the unbinned fitting, and the reduced χ2 from the binned 
representation was used only to cross check the goodness-of-fit.

One of striking results in the present work is the observation of a significantly shorter lifetime 
value of 3

!H than that of the !-hyperon. With the former data [22–28], it had been difficult to 
conclude the lifetime of 3

!H since these experimental data are distributed widely with large error 
bars. Therefore, it had been concluded that the lifetime of 3

!H should be similar to that of the 
!-hyperon without strong experimental evidences due to its small !-binding energy. However, 
as shown above, our result on the lifetime of 3

!H reveals 183+42
−32 ps. Thus, in order to summarise 

the former results for the lifetime of 3
!H together with our result, all the existing data till 2014 for 

the lifetime observations of 3
!H were combined with a similar methodology of PDG, and results 

were already discussed in [2]. We also performed the same analyses for the lifetime of 4
!H [2]. 

For 3
!H, data set used are taken from [1,22–28] and for 4

!H from [1,15,22,24,29–31]. Results 
of the combined analyses are shown in Fig. 3. Details are also discussed in [32] including an 
alternative statistical analysis applying a Bayesian approach [2]. Fig. 3 shows that the combined 
lifetime values of 3

!H and 4
!H are significantly smaller than that of the !-hyperon. The exclu-

sion band at 95% confidence level, useful for discarding theoretical models, was also deduced. 

W E  T H O U G H T  W E ’ V E  
E S TA B L I S H E D  …

• Λ-hypernuclei : 3ΛH, …, 208ΛPb

• UΛ= -29±1 MeV 
(attractive)

• Only one 4ΣHe

• UΣ> +20-30 MeV 
(repulsive)

• 6ΛΛHe, ∆BΛΛ=0.7 MeV 
(weakly attractive)

• Λn, 3Λn ; bound ?

• Short Lifetime of 3ΛH

 9

206 T.R. Saito et al. / Nuclear Physics A 954 (2016) 199–212

Fig. 4. Invariant mass distributions of d+π− final state candidate in panels (a1) (a2), and of t+π− in panels (b1) (b2). 
Panels (a1) and (b1) are for −10 cm < Z < 30 cm, and (a2) and (b2) are for −2 cm < Z < 30 cm. Observed distributions 
are represented by the filled-in circles. The hashed orange region represents one standard deviation of the fitted model 
centred at the solid blue line of the total best fit. The black and coloured dotted-lines respectively show the separate 
contributions of the signal and the background. The open triangle represents the data corresponding to invariant mass 
distribution of the mixed event analysis. The figures are taken from [4]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

−10 cm < Z < 30 cm includes vertices from the production target while the other condition ex-
cludes the target region. The deduced invariant mass distributions are represented by the filled-in 
circles. The mass values were calibrated by using the data for the reconstructed invariant mass 
peak positions of ", 3

"H and 4
"H. Fitting of the distributions of signal-plus-background from the 

data were performed in the similar fashion to 3
"H and 4

"H. By hypothesis testing via profiled like-
lihood ratio tests, the significance values of observed peaks of d+π− for −10 cm < Z < 30 cm
and −2 cm < Z < 30 cm were determined to be respectively 5.3 and 3.7 σ , and for t+π− they 
are 5.0 and 5.2 σ , respectively. Vertex distributions of the d+π− and t+π− were analysed to de-
duce the lifetime values of the initial states decaying those final states by using a similar manner 
for 3

"H and 4
"H. As shown in Fig. 5, resultant lifetime values with the d+π− and t+π− final 

states are respectively 181+30
−24 ps and 190+47

−35 ps.
As discussed in [4], we studied systematic uncertainties and possibility to produce peaks in 

the d+π− and t+π− invariant mass distributions by mis-reconstructing the other possible decay 
channels. It was concluded that the other channels could not create peaks like those observed 
in the d+π− and t+π− final states. Therefore, a possible interpretation for the observed t+π−

and d+π− final states might be the two- and three-body decays of an unknown bound state of 
two neutrons associated with ", 3

"n, via 3
"n→t+π− and 3

"n→t∗+π−→d+n+π−, respectively. 
With this interpretation, the production mechanism of 3

"n might be the Fermi break-up of excited 
heavier hyperfragments [43]. On the other hand, the direct coalescence of a "-hyperon and a 
di-neutron state is unlikely, because the di-neutron state is known to be unbound.

Λn

3Λn

C.Rappold et al., PRC 88

(2013) 041001R



S E A R C H  F O R  3 Λn
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The nnΛ experiment at JLab (E12-17-003)

3H target

e

𝐾𝐾+
𝑒𝑒𝑒

𝑝𝑝𝐾𝐾 = 1.82 GeV/𝑐𝑐 ± 4.5%

𝜃𝜃𝑒𝑒𝑒𝑒′ = 13.2°
𝜃𝜃𝑒𝑒𝐾𝐾 = 13.2°𝑝𝑝𝑒𝑒′ = 2.22 GeV/𝑐𝑐 ± 4.5%

𝐸𝐸𝑒𝑒 = 4.32 GeV
𝐼𝐼𝑒𝑒 = 20 μA

HRS :QQDQ magnets

JLab E12-17-003

Search for the Λnn with the e, e′K+

Λ
3𝑛𝑛

3H

𝜋𝜋−

𝜦𝜦
𝟑𝟑𝒏𝒏 ? !

C. Rappold et al. (HypHI Collaboration), 
Phys. Rev. C 88, 041001(R) (2013).

𝛾𝛾∗

3H

n
p

Λ n

n
n

𝐾𝐾+

𝟑𝟑𝐇𝐇 𝐞𝐞, 𝐞𝐞′𝐊𝐊+ 𝒏𝒏𝒏𝒏𝚲𝚲 with HRSs
E12-07-003 (Oct—Nov, 2018)

E. Hiyama et al., Phys. Rev. C 89, 061302(R) (2014)
A. Gal et al., Phys. Lett. B 736, 93–97 (2014) 

Bound 𝜦𝜦𝟑𝟑𝒏𝒏 cannot be reproduced:

Liguang Tang’s Talk 



The nnΛ experiment at JLab (E12-17-003)

3H target

e

𝐾𝐾+
𝑒𝑒𝑒

𝑝𝑝𝐾𝐾 = 1.82 GeV/𝑐𝑐 ± 4.5%

𝜃𝜃𝑒𝑒𝑒𝑒′ = 13.2°
𝜃𝜃𝑒𝑒𝐾𝐾 = 13.2°𝑝𝑝𝑒𝑒′ = 2.22 GeV/𝑐𝑐 ± 4.5%

𝐸𝐸𝑒𝑒 = 4.32 GeV
𝐼𝐼𝑒𝑒 = 20 μA

HRS :QQDQ magnets
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Data Taking : Oct 30 - Nov 25, 2018.



C H A R G E - S Y M M E T R Y  B R E A K I N G  
I N  4 - B O DY  S Y S T E M S

• 4ΛHe - 4ΛH (Update)

• New measurement of B(4ΛH)=2.157±0.077 MeV by MAMI A1.

• New measurement of ∆B(4ΛHe) at J-PARC.

• Eγ(M1)=1.406±0.002±0.002 MeV

 12
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Figure 1. 4
ΛH-

4
ΛHe level diagram, before (left panel) and after (right panel) the recent

measurements of the 4
ΛHe excitation energy Eγ(1+exc → 0+g.s.) at J-PARC [6], and of the 4

ΛH
0+g.s. binding energy at MAMI [7,8], both highlighted in red in the online version. CSB splittings
are shown to the very right of the 4

ΛHe levels. Figure adapted from [8].

In addition to OPE, Λ−Σ0mixing affects also shorter range meson exchanges (e.g. ρ) that
in χEFT are replaced by contact terms. Quite generally, in baryon-baryon models that include
explicitly a charge-symmetric (CS) ΛN ↔ ΣN (ΛΣ) coupling, the direct ΛN matrix element of
VCSB is obtained from a strong-interaction CS ΛΣ coupling matrix element ⟨NΣ|VCS|NΛ⟩ by

⟨NΛ|VCSB|NΛ⟩ =−0.0297 τNz
1√
3
⟨NΣ|VCS|NΛ⟩, (1)

where the z component of the nucleon isospin Pauli matrix τ⃗N assumes the values τNz = ± 1
for protons and neutrons, respectively, the isospin Clebsch-Gordan coefficient 1/

√
3 accounts

for the NΣ0 amplitude in the INY = 1/2 NΣ state, and the space-spin structure of this NΣ
state is taken identical to that of the NΛ state sandwiching VCSB. The 3% CSB scale factor
−0.0297 in Eq. (1) follows by evaluating the Λ−Σ0 mass mixing matrix element ⟨Σ0|δM |Λ⟩
from SU(3) mass formulae [4, 9]. The corresponding diagram for generating ⟨NΛ|VCSB|NΛ⟩ is
shown in Fig. 2, demonstrating explicitly the δM CSB insertion.

Λ

N

Λ

N

VΛN−ΣN

•
δM

Σ0

Figure 2. CSB ΛN interaction diagram describing a CS VΛN−ΣN interaction followed by a
CSB Λ−Σ0mass-mixing vertex.

Since the CSB ΛN matrix element in Eq. (1) is given in terms of strong-interaction CS ΛΣ
coupling, one wonders how strong the latter is in realistic microscopic Y N interaction models.
Recent four-body calculations of 4

ΛHe levels [10], using the Bonn-Jülich leading order (LO)
χEFT Y N CS potential model [11], show that almost 40% of the 0+g.s. → 1+exc excitation energy
Ex arises from ΛΣ coupling. This also occurs in the NSC97 models [12] as demonstrated by

2

1234567890 ‘’“”

12th International Spring Seminar on Nuclear Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 966 (2018) 012006  doi :10.1088/1742-6596/966/1/012006

Λ

Λ

Λ 

Figure 1. 4
ΛH-

4
ΛHe level diagram, before (left panel) and after (right panel) the recent

measurements of the 4
ΛHe excitation energy Eγ(1+exc → 0+g.s.) at J-PARC [6], and of the 4

ΛH
0+g.s. binding energy at MAMI [7,8], both highlighted in red in the online version. CSB splittings
are shown to the very right of the 4

ΛHe levels. Figure adapted from [8].

In addition to OPE, Λ−Σ0mixing affects also shorter range meson exchanges (e.g. ρ) that
in χEFT are replaced by contact terms. Quite generally, in baryon-baryon models that include
explicitly a charge-symmetric (CS) ΛN ↔ ΣN (ΛΣ) coupling, the direct ΛN matrix element of
VCSB is obtained from a strong-interaction CS ΛΣ coupling matrix element ⟨NΣ|VCS|NΛ⟩ by

⟨NΛ|VCSB|NΛ⟩ =−0.0297 τNz
1√
3
⟨NΣ|VCS|NΛ⟩, (1)

where the z component of the nucleon isospin Pauli matrix τ⃗N assumes the values τNz = ± 1
for protons and neutrons, respectively, the isospin Clebsch-Gordan coefficient 1/

√
3 accounts

for the NΣ0 amplitude in the INY = 1/2 NΣ state, and the space-spin structure of this NΣ
state is taken identical to that of the NΛ state sandwiching VCSB. The 3% CSB scale factor
−0.0297 in Eq. (1) follows by evaluating the Λ−Σ0 mass mixing matrix element ⟨Σ0|δM |Λ⟩
from SU(3) mass formulae [4, 9]. The corresponding diagram for generating ⟨NΛ|VCSB|NΛ⟩ is
shown in Fig. 2, demonstrating explicitly the δM CSB insertion.

Λ

N

Λ

N

VΛN−ΣN

•
δM

Σ0

Figure 2. CSB ΛN interaction diagram describing a CS VΛN−ΣN interaction followed by a
CSB Λ−Σ0mass-mixing vertex.

Since the CSB ΛN matrix element in Eq. (1) is given in terms of strong-interaction CS ΛΣ
coupling, one wonders how strong the latter is in realistic microscopic Y N interaction models.
Recent four-body calculations of 4

ΛHe levels [10], using the Bonn-Jülich leading order (LO)
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A. Gal, H. Garcilazo / Physics Letters B 791 (2019) 48–53 49

Fig. 1. Measured 3
!H lifetime values in chronological order, with (a)–(f) from emulsion and bubble-chamber measurements [3–8], and from recent relativistic heavy ion 

experiments: STAR(I) [9], HypHI [10], ALICE(I) [11], STAR(II) [12], ALICE(II) [13], see text. We thank Benjamin Dönigus for providing this figure [14].

p + p +n +π− . The π0 decay channels were related by the #I = 1
2

rule in a ratio 1:2 to the corresponding π− channels. Their calcu-
lated 3

!H lifetime is 256 ps: shorter by 3% than the measured value 
of τ! , but shorter by 6% than their calculated value of 272 ps for 
τ! . Hence, we refer to their result as τ (3

!H) ≈ 0.94 τ! .
In this Letter we study pion FSI which in accord with low-

energy pion-nucleus phenomenology [21,22] is generally consid-
ered repulsive, thereby increasing rather than decreasing τ (3

!H). 
However, exceptionally for 3

!H, pion FSI is attractive and poten-
tially capable of resolving much of the τ (3

!H) puzzle. A fully 
microscopic inclusion of pion FSI requires a four-body final-state 
model, a formidable project that still needs to be done. Instead, 
we study here τ (3

!H) within a closure-approximation calculation 
in which the associated exchange matrix element is evaluated with 
wavefunctions obtained by solving 3

!H three-body Faddeev equa-
tions. Disregarding pion FSI, our result τ (3

!H) ≈ 0.90 τ! differs by 
a few percent from that of the microscopic Faddeev calculation 
by Kamada et al. [16]. Introducing pion FSI in terms of pion dis-
torted scattering waves results in τ (3

!H)= (0.81± 0.02)τ! , that is 
(213± 5) ps, in the right direction towards resolving much of the 
τ (3

!H) puzzle.
Finally, as a by-product of studying τ (3

!H), we estimate for the 
first time the lifetime of 3

!n assuming that it is bound. The parti-
cle stability of 3

!n was conjectured by the GSI HypHI Collaboration 
having observed a 3H+π− decay track [23], but is unanimously 
opposed by recent theoretical works [24–26]. Our estimate sug-
gests a value of τ (3

!n) considerably longer than τ! , in strong dis-
agreement with the shorter lifetime reported in Ref. [23].

2. Total decay rate expressions for 3!H and 3!n

The ! weak decay rate considered here, %! ≈ %π−
! + %π0

! , 
accounts for the mesonic decay channels pπ− (63.9%) and nπ0

(35.8%). Each of these partial rates consists of a parity-violating 
s-wave term (88.3%) and a parity-conserving p-wave term (11.7%), 
summing up to

%!(q) = q
1 + ωπ (q)/E N(q)

(|sπ |2 +|pπ |2 q2

q2
!

),

∣∣∣∣
pπ

sπ

∣∣∣∣
2

≈ 0.132,

(1)

where %! is normalized to |sπ |2 + |pπ |2 = 1, ωπ (q) and E N(q)
are center-of-mass (cm) energies of the decay pion and the recoil 
nucleon, respectively, and q → q! ≈ 102 MeV/c in the free-space 

! → Nπ weak decay. The ≈2:1 ratio of π−:π0 decay rates, the 
so called #I = 1

2 rule in nonleptonic weak decays, assigns the final 
π N system to a well-defined I = 1

2 isospin state.

2.1. 3
!H

For 3
!H ground state (g.s.) weak decay, approximating the out-

going pion momentum by a mean value q̄ and using closure in the 
evaluation of the summed mesonic decay rate, one obtains [15]

%
J = 1/2

3
!H

= q̄
1 + ωπ (q̄)/E3N(q̄)

[|sπ |2(1 + 1
2
η(q̄))

+ |pπ |2( q̄
q!

)2(1 − 5
6
η(q̄))]. (2)

In this equation we have omitted terms of order 0.5% of %(q̄) that 
correct for the use of q̄ in the two-body 3

!H→ π + 3 Z rate expres-
sions [17]. We note that applying the #I = 1

2 rule to the isospin 
I = 0 decaying 3

!Hg.s. , here too as in the free ! decay, the ratio 
of π−:π0 decay rates is approximately 2:1. The quantity η(q̄) in 
Eq. (2) is an exchange integral ensuring that the summation on fi-
nal nuclear states is limited to totally antisymmetric states:

η(q) =
∫

χ(r⃗!; r⃗N2, r⃗N3)

× exp[iq⃗ · (r⃗! − r⃗N2)]χ∗(r⃗N2; r⃗!, r⃗N3)d3r⃗!d3r⃗N2d3r⃗N3.

(3)

Here χ(r⃗!; ⃗rN2, ⃗rN3) is the real normalized spatial wavefunction of 
3
!H, symmetric in the nucleon coordinates 2 and 3. This wavefunc-
tion, in abbreviated notation χ(1; 2, 3), is associated with a single 
spin-isospin term which is antisymmetric in the nucleon labels, 
such that s! = 1

2 couples to s⃗1 + s⃗2 = 1 to give Stot = 1
2 for the 

ground state and Stot = 3
2 for the spin-flip excited state (if bound), 

and t! = 0 couples trivially with t⃗1 + t⃗2 = 0. Eq. (2) already ac-
counts for this spin-isospin algebra in 3

!H. For completeness we 
also list the total decay rate expression for 3

!H if its g.s. spin-parity 
were J P = 3

2
+

:

%
J = 3/2

3
!H

= q̄
1 + ωπ (q̄)/E3N(q̄)

[|sπ |2(1 − η(q̄))

+ |pπ |2( q̄
q!

)2(1 − 1
3
η(q̄))]. (4)

A. Gal, H. Garcilazo  
PLB 791 (2019) 48.

Pion FSI (attractive) shorten the life time (0.81±0.02)τΛ

τ(３ΛH)~τΛ ?
Loosely-bound p-n-Λ, BΛ~0.1 MeV
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K  + 3He → ( Λ + p ) + n-

Exclusive: Λ p n

Λpn final state
w/ 4-momentum

conservation

CDS

K-

1	GeV/c

3He
nmis.

π-

Λ

p

p
q

q: virtual kaon 
momentum 

assuming KN→KN

simplest final state
3 baryon w/ strangeness

MΛp

E15



!15622 S. Ajimura et al. / Physics Letters B 789 (2019) 620–625

Fig. 1. a) 2D event distribution plot on the M (= IM!p ) and the momentum transfer q (q!p ) for the !pn final state. The M F (q) given in Eq. (2), the mass threshold M(Kpp), 
and the kinematical boundary for !pn final state, are plotted in the figure. The lower q boundary corresponds to θn = 0 (forward n), and the upper boundary corresponds to 
θn = π (backward n). The histograms of projection onto the M axis b), and onto q axis c) are also given together with the decompositions of the fit result.

tation. On the other hand, the distribution centroid of M above 
M(Kpp) depends on q, and the yield vanishes rapidly as a function 
of q. The centroid shifts to the heavier M side for the larger q, sug-
gesting its non-resonant feature, i.e. the propagator’s kinetic energy 
is converted to the relative kinetic energy between ! and p, near 
the lower q boundary. Thus, the most natural interpretation would 
be non-resonant absorption of quasi-free ‘K ’ by the ‘N N ’ spectator 
(QFKA) due to the final state interaction (FSI). This process can be 
understood as a part of the quasi-free K reaction, in which most 
K s escape from the nucleus, as we published in [21]. Note that 
there is another change in event distributions at M(Kpp), i.e., the 
event density is low close to the θn = 0 line below M(Kpp), while 
it is high above M(Kpp) (this point will be separately discussed in 
the last section).

This spectral substructure is in relatively good agreement with 
that of Sekihara–Oset–Ramos’s spectroscopic function [23 ] to ac-
count for the observed structure in [22]. Actually, their spectrum 
has two structures, namely A) a “K −pp” pole below the mass 
threshold M(Kpp) (meson bound state), and B) a QFKA process 
above the M(Kpp). Thus, the interpretation of the internal sub-
structures near M(Kpp) is consistent with their theoretical picture.

3. Fitting procedure

We first describe what we can expect if point-like reactions 
happen between an incoming K − and 3 He, which goes to a !pn
final state. The events must distribute simply according to the !pn
Lorentz-invariant phase space ρ3 (M, q), as shown in Fig. 2a. We 
fully simulated these events based on our experimental setup and 
analyzed the simulated events by the common analyzer applied 
to the experimental data. The result is shown in Fig. 2b, which 
is simply E(M, q) × ρ3 (M, q), where E(M, q) is the experimen-
tal efficiency. One can evaluate E(M, q) by dividing Fig. 2b by 
Fig. 2a bin-by-bin, which is given in Fig. 2c. As shown in Fig. 2c, 
we have sufficient and smooth experimental efficiency at the re-
gion of interest, M ≈ M(Kpp) at lower q, based on the careful 
design of the experimental setup. On the other hand, the efficiency 

is rather low at the dark blue region and even less toward the 
kinematical boundary, as shown in Fig. 2c. If we simply apply the 
acceptance correction, the statistical errors of those bins become 
huge and very asymmetric. This fact makes the acceptance correc-
tion of the entire (M, q) region unrealistic. Therefore, we applied 
a reverse procedure, i.e., we prepared smooth functions f{ j}(M, q)

(to account for the j-th physical process) and multiplied that with 
E(M, q) × ρ3 (M, q) (= Fig. 2b) bin-by-bin. In this manner, one 
can reliably estimate how the physics process should be observed 
in our experimental setup, and this permitted us to calculate the 
mean-event-number expected in each 2D bin. The three introduced 
model functions (at the best fit parameter set) are shown in Fig. 3 .

A very important and striking structure exists below M(Kpp), 
which could be assigned as the “K − pp” signal. To make the fitting 
function as simple as possible, let us examine the event distri-
bution by using the same function as was applied in [22], i.e., a 
product of B.W. depending only on M , and an S-wave harmonic-
oscillator form-factor depending only on q as:

f{Kpp} = CKpp
(
%Kpp/2

)2

(
M − MKpp

)2 +
(
%Kpp/2

)2 exp

(

−
(

q
Q Kpp

)2
)

, (1)

where MKpp and %Kpp are the B.W. pole position and the width, 
Q Kpp is the reaction form-factor parameter, and CKpp is the nor-
malization constant, as shown in Fig. 3 a.

A model-function of the QFKA channel, f{Q F KA} (M, q), is intro-
duced as follows. As described, we assume that a ‘K ’ propagates 
between the two successive reactions. It consists of 1) K −N →
‘K ’N and 2) non-resonant ‘K ’ + ‘N N ’ → ! + p in the FSI. When the 
‘K ’ propagates at momentum q as an on-shell particle in the spec-
tator’s rest frame (≡laboratory-frame), then the resulting invariant 
mass M (≡I M!p(‘K + N N ’)) can be given as:

M F (q) =
√

4 m2
N + m2

K + 4 mN

√
m2

K + q2, (2)
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Fig. 2. Simulated spectra of a) Lorentz-invariant !pn phase space ρ3(M, q) by taking into account the kaon beam momentum bite, b) E(M, q) ×ρ3(M, q), and c) experimental 
efficiency, E(M, q), evaluated by the bin-by-bin ratio between a) and b). The unit of z-axis (color code) is per one generated events both for a) and b). For c), the ratio is 
given.

Fig. 3. Individual 2D fit functions of the three physical processes, a) “Kpp”, b) QFKA and c) BG in the form of E(M, q) ρ3(M, q) f j(M, q) at the best fit parameter set. The 
z-axis (color code) is the expected-mean event number to be observed. The pale-blue is for the region where the expected number is below one. The z-axis’ color code of c) 
is changed to show its (M, q)-dependence clearly.

where mN and mK are the intrinsic mass of the nucleon and 
the kaon, respectively. The curve originating at M = M(Kpp) in 
Fig. 1 a is the M F (q), which is consistent with the q-dependence 
of QF KA as shown in the figure. Along the line, there are two 
strong event-concentrations observed at θn = 0 (backward ‘K ’) and 
θn = π (forward ‘K ’). To account for the distribution, we de-
fined f{Q F KA} (M, q) as follows. For the q-direction, we introduced 
Gaussian and exponential distributions at around the minimum 
and maximum, respectively, with a constant in between. For the 
M-direction, a Gaussian around M F (q) is applied to account for 
the spectator’s Fermi-motion.

There is another component, widely distributing over the kine-
matically allowed region of M and q, which was previously ob-
served [22]. In reference [22], we simply assumed that the yield of 
this component was proportional to ρ3(M, q). However, with the 
present much improved statistics, we found that we cannot fit this 
component with ρ3(M, q). Compared to ρ3(M, q), the yields in the 
heavier M region and lower q region are much weaker, as shown 
in the fit curve given in Fig. 1 b and c. Thus, we phenomenologically
introduced a distribution function, f{BG}(M, q), similar to Eq. (1 ), 
but we expanded the q-dependent harmonic oscillator term to al-
low angular momentum up to P -wave, as shown in Fig. 3c.

The data D(M, q) can be fitted by using the maximum likeli-
hood method, whose likelihood lnL{fit} is given by a Poisson distri-

bution P (X = D(M, q); λD(M, q)) having mean value λD(M, q) at 
each (M, q)-bin as:

lnL{fit} = −
∑

M

∑

q

ln P (X = D(M, q);λD(M, q)). (3)

The fitting function λD(M, q) is defined as:

λD(M, q) = E(M, q)ρ3(M, q)

⎛

⎝
∑

j

y j f j(M, q)

⎞

⎠ , (4)

where y j is the yield of the j-th physical process, and the first 
term E(M, q) ρ3(M, q) is simply Fig. 2b.

To examine whether we should introduce more sophisticated 
model functions, we also studied the following distributions. In 
the 3He(K −, !p)n reaction followed by ! → pπ− decay, there are 
five kinematically independent observables in total. The remain-
ing three kinematical parameters, independent of M and q, define 
the decay kinematics of “K −pp” → !p and the ! → pπ− de-
cay asymmetry. Thus, these parameters are sensitive to J P of the 
reaction channels. For the “K − pp” signal, we analyzed events in 
the window M = 2.28 ∼2.38 GeV/c2 where the major part of the 
component is located, and q = 350 ∼650 MeV/c where no severe 
interference is expected with f{Q F KA} . The angular distributions are 
fairly flat for any of the three kinematical parameters. Therefore, 
the angular distribution is consistent with S-wave. Thus, there is 
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Fig. 1. a) 2D event distribution plot on the M (= IM!p ) and the momentum transfer q (q!p ) for the !pn final state. The M F (q) given in Eq. (2), the mass threshold M(Kpp), 
and the kinematical boundary for !pn final state, are plotted in the figure. The lower q boundary corresponds to θn = 0 (forward n), and the upper boundary corresponds to 
θn = π (backward n). The histograms of projection onto the M axis b), and onto q axis c) are also given together with the decompositions of the fit result.

tation. On the other hand, the distribution centroid of M above 
M(Kpp) depends on q, and the yield vanishes rapidly as a function 
of q. The centroid shifts to the heavier M side for the larger q, sug-
gesting its non-resonant feature, i.e. the propagator’s kinetic energy 
is converted to the relative kinetic energy between ! and p, near 
the lower q boundary. Thus, the most natural interpretation would 
be non-resonant absorption of quasi-free ‘K ’ by the ‘N N ’ spectator 
(QFKA) due to the final state interaction (FSI). This process can be 
understood as a part of the quasi-free K reaction, in which most 
K s escape from the nucleus, as we published in [21]. Note that 
there is another change in event distributions at M(Kpp), i.e., the 
event density is low close to the θn = 0 line below M(Kpp), while 
it is high above M(Kpp) (this point will be separately discussed in 
the last section).

This spectral substructure is in relatively good agreement with 
that of Sekihara–Oset–Ramos’s spectroscopic function [23 ] to ac-
count for the observed structure in [22]. Actually, their spectrum 
has two structures, namely A) a “K −pp” pole below the mass 
threshold M(Kpp) (meson bound state), and B) a QFKA process 
above the M(Kpp). Thus, the interpretation of the internal sub-
structures near M(Kpp) is consistent with their theoretical picture.

3. Fitting procedure

We first describe what we can expect if point-like reactions 
happen between an incoming K − and 3 He, which goes to a !pn
final state. The events must distribute simply according to the !pn
Lorentz-invariant phase space ρ3 (M, q), as shown in Fig. 2a. We 
fully simulated these events based on our experimental setup and 
analyzed the simulated events by the common analyzer applied 
to the experimental data. The result is shown in Fig. 2b, which 
is simply E(M, q) × ρ3 (M, q), where E(M, q) is the experimen-
tal efficiency. One can evaluate E(M, q) by dividing Fig. 2b by 
Fig. 2a bin-by-bin, which is given in Fig. 2c. As shown in Fig. 2c, 
we have sufficient and smooth experimental efficiency at the re-
gion of interest, M ≈ M(Kpp) at lower q, based on the careful 
design of the experimental setup. On the other hand, the efficiency 

is rather low at the dark blue region and even less toward the 
kinematical boundary, as shown in Fig. 2c. If we simply apply the 
acceptance correction, the statistical errors of those bins become 
huge and very asymmetric. This fact makes the acceptance correc-
tion of the entire (M, q) region unrealistic. Therefore, we applied 
a reverse procedure, i.e., we prepared smooth functions f{ j}(M, q)

(to account for the j-th physical process) and multiplied that with 
E(M, q) × ρ3 (M, q) (= Fig. 2b) bin-by-bin. In this manner, one 
can reliably estimate how the physics process should be observed 
in our experimental setup, and this permitted us to calculate the 
mean-event-number expected in each 2D bin. The three introduced 
model functions (at the best fit parameter set) are shown in Fig. 3 .

A very important and striking structure exists below M(Kpp), 
which could be assigned as the “K − pp” signal. To make the fitting 
function as simple as possible, let us examine the event distri-
bution by using the same function as was applied in [22], i.e., a 
product of B.W. depending only on M , and an S-wave harmonic-
oscillator form-factor depending only on q as:

f{Kpp} = CKpp
(
%Kpp/2

)2

(
M − MKpp

)2 +
(
%Kpp/2

)2 exp

(

−
(

q
Q Kpp

)2
)

, (1)

where MKpp and %Kpp are the B.W. pole position and the width, 
Q Kpp is the reaction form-factor parameter, and CKpp is the nor-
malization constant, as shown in Fig. 3 a.

A model-function of the QFKA channel, f{Q F KA} (M, q), is intro-
duced as follows. As described, we assume that a ‘K ’ propagates 
between the two successive reactions. It consists of 1) K −N →
‘K ’N and 2) non-resonant ‘K ’ + ‘N N ’ → ! + p in the FSI. When the 
‘K ’ propagates at momentum q as an on-shell particle in the spec-
tator’s rest frame (≡laboratory-frame), then the resulting invariant 
mass M (≡I M!p(‘K + N N ’)) can be given as:

M F (q) =
√

4 m2
N + m2

K + 4 mN

√
m2

K + q2, (2)

K-pp : 
K-3He→(K-pp)+n,  

            (K-pp)→Λp

QFKA:  
K-“n”→n”K”, 

    “K”+”pp”→Λp

ℰ(M, q) × ρ3(M, q)

3Nabs : 
K-3He→Λpn

Simulation
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Fit result for K-pp

• BKpp=46±3+3/-6 MeV 

• ΓKpp=115±7+10/-20 MeV 

• QKpp=381±14+57/-0 MeV 

• σ•Br=11.8±0.4+0.2/-1.7 μb
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Fig. 4. !p invariant mass spectrum for !pn final state produced in the momentum 
transfer window of 350 < q < 650 MeV/c. The efficiency E(M, q) was corrected 
based on the simulation before the q integration of the data. Each fitted physical 
process, which is efficiency corrected and integrated over the q-window after the 
fit, is also given.

no specific reason to introduce any sophisticated terms in addition 
to Eq. (1). In fact, a flat distribution is naturally expected if the 
pole’s quantum-number is J P = 0− . We also analyzed the angular 
distributions for f{Q F KA} and f{BG} . However, again we found no 
specific reason to introduce further terms.

We haven’t considered the interference terms between the 
three physical processes as given in Eq. (4), to avoid over fit-
ting of our statistically limited data. Instead, we applied a peak 
fitting window to reduce the interference effect on our fit re-
sult by the following procedures. We conducted i) the peak fit, 
where f{Q F KA} (M, q) is fitted by fixing all the parameters of 
f{Q F KA} (M, q) and f{BG}(M, q) within the q-window where no 
severe interference with QFKA is expected. We then iterated 
this procedure together with procedure ii) a global fit to evaluate
f{Q F KA} (M, q) and f{BG}(M, q) (by fixing parameters in f{Kpp} ex-
cept for the peak yield CKpp), until procedures i) and ii) converged.

To exhibit this “K −pp” candidate and to present the M spec-
trum free from experimental acceptance, we plotted the spectrum 
by correcting our detector efficiency for the events in the mo-
mentum transfer window of 350 < q < 650 MeV/c where mostly 
E(M, q) ≫ 0, as shown in Fig. 4. To make fit values insensitive to 
the acceptance correction procedure, we corrected the acceptance 
as follows. The data D(M, q) was divided by E(M, q) bin-by-bin 
and integrated over q at given M . We applied the same procedure 
for the data error taking error-propagation into account. For each 
projected physics process ρ3 f j (plotted as the curved lines in the 
figure), we integrated over q, by replacing the E(M, q) ρ3(M, q)
function (given in Fig. 2b) with ρ3(M, q) (Fig. 2a) to be multiplied 
by f j(M, q), cf., Eq. (4).

In this window, the yield of other processes is largely sup-
pressed in contrast to “K − pp”. The QFKA distribution is also clearly 
separated from the “K − pp” peak region, because the QFKA centroid 
is kinematically shifted to the heavier side, according to Eq. (2), cf., 
a comparison of the spectral difference of the QFKA component in-
setted in blue curves in Fig. 1b and Fig. 4. As a result, a distinct 
peak is observed below M(Kpp).

4. Fit result

The S-wave parameters obtained were; the mass eigenvalue 
MKpp = 2324 ± 3 (stat.) +6

−3 (sys.) MeV/c2 (i.e. BKpp ≡ M(Kpp) −
MKpp = 47  ± 3 (stat.) +3

−6 (sys.) MeV), the width #Kpp = 115 ±

7  (stat.) +10
−20 (sys.) MeV, and the reaction form-factor parameter 

Q Kpp = 381 ± 14 (stat.) +57
−0 (sys.) MeV/c. The q-integrated “K − pp” 

formation yield below the threshold going to the !p decay chan-
nel is evaluated to be σKpp · Br!p = 7 .2 ± 0.3 (stat.) +0.6

−1.0 (sys.)
µb (for M < M(Kpp)). For the complete integration over all 
q and M , the cross-section becomes σ tot

Kpp · Br!p = 11.8 ±
0.4 (stat.) +0.2

−1.7 (sys.) µb.
We evaluated the systematic errors caused by the spectrometer 

magnetic field strength calibrated by invariant masses of ! and 
K 0 decay, binning effect of the spectrum, and the contamination 
effects of the other final states (%0 pn and %− pp) to the !pn event 
selection. To be conservative, the effects to the fit values are added 
linearly. More detailed analysis will be given in a forthcoming full 
paper.

The BKpp ∼50 MeV is much deeper than reported in our first 
publication since the assumption of a single pole structure was 
invalid. It is also much deeper than chiral-symmetry-based theo-
retical predictions. The #Kpp ∼110 MeV is rather wide, meaning 
very absorptive. On the other hand, it should be similar to that of 
!(1405) → %π , if “K −pp” decays like ‘!(1405)’ + ‘p’ → %π p. 
Thus, the observed large width indicates that the non-mesonic Y N
channels would be the major decay mode of the “K − pp”. Interest-
ingly, the observed Q Kpp ∼400 MeV/c is very large. The large Q Kpp
value implies the formation of a very compact (∼0.5 fm) system 
referring to h̄ ∼200 MeV/c fm. The compactness of the system is 
also supported by the large BKpp . However, the present Q Kpp can 
be strongly affected by the primary K N → K N reaction in the for-
mation process, so one needs more study to evaluate the static 
form-factor parameter of “K − pp” to deduce its size (or nuclear 
density) more quantitatively.

5. Discussion and conclusion

We have demonstrated the existence of a peak structure in 
IM!p below M(Kpp), which can be kinematically separated very 
clearly from QFKA by selecting the momentum transfer window 
of 350 < q < 650 MeV/c. As shown in Fig. 1a, the “K − pp” dis-
tribution yield reduces near θn = 0 as a function of q, and it is 
∼proportional to the phase space volume defined by Jacobian (cf., 
Fig. 2a (or b)). This is naturally expected if the S-wave harmonic-
oscillator form-factor given in Eq. (1) is valid. On the other hand, 
the QFKA distribution is highly concentrated at θn = 0, where the 
phase space ρ3(M, q) is vanishing. This is consistent with our pre-
vious result [21], in which no structure was found below M(Kpp)
at θn = 0, i.e., the leaking-tail of QFKA into the bound region hides 
the structure below M(Kpp) at θn = 0.

The present !pn final state is the simplest channel for K − in-
teracting with 3He. In this final state, the “kinematical anomaly” 
is only seen in IM!p having an angular distribution consistent 
with S-wave. Thus, there is no reasonable explanation as to why a 
peak structure could be formed below M(Kpp) other than “K −pp”. 
However, one may wonder whether a spurious bump near M(Kpp)
might be formed from some intermediate state converging (or con-
verting) to a !pn final state in the FSI.

Here we discuss possible candidates for such an intermedi-
ate state. Energetically, the possible intermediate states could be 
‘! + p’, ‘% + N ’ and ‘!(1405) + N ’ below ‘K − + p + p’, which 
has an s-quark and two baryons (‘%(1385) + N ’ is excluded be-
cause it requires P -wave). In other words, a Y (∗) (baryon with 
an s-quark) could be generated by the primary 2NA reaction, and 
the Y (∗) could make a successive conversion reaction with another 
spectator nucleon, to form a !pn final state due to the FSI. Similar 
to Eq. (2), the IM!p of these channels can be given as:

q: 350 ~ 650 MeV/c
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J - PA R C  E 0 5

■ 12C(K-,K+) at 1.8 GeV/c 
■ 26-Oct-2015 ~ 19-Nov-2015 
■ K- intensity : 6x105 K- / spill  
■      (5.52 seconds cycle) @ 39 kW 
■ 9.36 g/cm2 natC; 10 days 
■ 9.54 g/cm2 CH2; 2 days 

■ E05 Setup 
■ ∆Ω = 110 msr, ∆p/pSKS = 3 × 10-3. 
■ ∆E = 5.4 MeV(FWHM) for K-p→K+Ξ-. 

■ Best performance for the (K-,K+) 
reaction

Search for a Ξ-hypernucleus
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5.4 MeV FWHM

CH2 target
Max. at 1.8 GeV/c
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Systematic study of double strangeness nuclei
with Hybrid emulsion method

ｎ
ｎ
ｐ
ｐ
Λ
Λ

ΛΛ hypernucleus

ｎ
ｎ
ｐ
ｐ
ｎΞ-

Ξ hypernucleus X-ray from Ξ− atom
Ξ-

Ag or Br

K-

K+

KURAMA spectrometer Data taking in 2016 and 2017
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KEK-PS E373 E07 (current)
Ξ- stop with nuclear fragment               430  1.6k    ( 1.6k/430 = 3.8)

S=-2 system  9  26

2019 May
So far, 70% of emulsion sheets has been scanned at least once. 

11 double Lambda events 8 twin events 7 others
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Λ
5He → 4He + p + π-

4He

p
π-

16O + Ξ- → ΛΛBe + 4He + H

Ξ-

ΛΛBe

4HeH

ｎ
ｎｐｐ

ｎΛΛ

Double-Λ Hypernucleus MINO  event

Λ
5He

p

ΛΛBe → Λ5He + H + p + xn

Possible interpretations  BΛΛ [MeV].               ΔBΛΛ [MeV]              kinematic fitting χ2   p-value[%]
Ξ- + 16O -> ΛΛ10Be + 4He + t  15.05 +- 0.11 1.63 +- 0.14          11.5           0.9
Ξ- + 16O -> ΛΛ11Be + 4He + d  19.07 +- 0.11 1.87 +- 0.37            7.3           6.4
Ξ- + 16O -> ΛΛ12Be* + 4He + p 13.68 +- 0.11 + Eex  -2.7+- 1.0 + Eex    11.3           1.0

ΛΛ
11Be is most probable by kinematic fittng χ2  (DOF=3)

Λ10Be
Λ

r r
ΛΛ

ΛΛ11Be
BΛ

BΛΛ

M(9Be) + MΛ - BΛ M(9Be) + 2MΛ - BΛΛ 

ΔBΛΛ

ΔBΛΛ : ΛΛ interaction energy

H. Ekawa et al.,Prog. Theor. Exp. Phys. 2019, 021D02



�26* Multiple candidates of Ξ hypernucleus with BΞ- beyond  3D atomic level in Ξ--14N systems
* We expect more examples through further analysis in E07.

0.174 MeV:3D atomic state
Prog. Theor. Phys. 105 (2001) 627. 
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• Two-particle correlations

• p-p → Source size r0 → Strong Interaction Information on 

other hadron pairs
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• Λ-Λ  arXiv: 1905.07209 [nucl-ex]
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Detailed study of the L–L interaction with femtoscopy in small systems ALICE Collaboration

L momentum and the vector pointing from the PV to the L decay vertex. The L purity in pp (p–Pb) is
found to be 97 (94)% with a primary fraction of 59 (50)%.

3 Analysis of the correlation function

The method used to investigate the L–L interaction relies on particle pair correlations measured as a
function of ~k⇤, defined as the single-particle momentum in the pair rest frame [23]. The observable of
interest C(~p1, ~p2) is defined as the ratio of the probability of measuring simultaneously two particles with
momenta ~p1 and ~p2, to the product of the single-particle probabilities:

C(~p1, ~p2) =
P(~p1, ~p2)

P(~p1)P(~p2)
. (1)

In the absence of correlations, the numerator factorizes and the correlation function becomes unity. The
femtoscopy formalism [23] relates the correlation function for a pair of particles, to their effective two-
particle emitting source function S(r) and the two-particle wave function Y(~k⇤,~r):

C(k⇤) =
Z

S(r) | Y(~k⇤,~r) |2 d3r k⇤!•���! 1, (2)

where r is the relative distance between the points of emission of the two particles. This definition
of C(k⇤) assumes that the emission source is not dependent on k⇤, it is spherically symmetric and the
emission of all particles is simultaneous. The EPOS transport model [34] predicts an emission source
that does not fully satisfy the above assumptions. However, it was verified that the above simplifications
result in very mild deviations in the correlation functions, which are negligible for the present analysis.

For a spherical symmetric potential the angular dependence of the wave-function is trivially integrated
out. Thus the direction of ~k⇤ becomes irrelevant on the left-hand side of Eq. 2. Particles with large
relative momenta q⇤ = 2k⇤ are not correlated, leading to C(k⇤ ! •) = 1.

The strong interaction has a typical range of a few femtometers and thus a significant modification of
the wave function with respect to its asymptotic form is expected only for r . 2 fm. Consequently, for
small emission sources the correlation function will be particularly sensitive to the strong interaction
potential. Experimentally, a small emission source can be formed in pp and p–Pb collisions [25, 35].
In the current analysis, it is assumed that the emission profile is Gaussian and that the p–p and L–L
systems are characterized by a common source size r0 = rp–p = rL–L, which is determined by fitting the
p–p correlation function and then used for the investigation of the L–L interaction.

Two different frameworks are available for the computation of C(k⇤). The first tool used in this analysis
is the “Correlation Analysis Tool using the Schrödinger equation” (CATS) [35]. Here, a local potential
V (r) is used as the input to a numerical evaluation of the wave function and the corresponding correlation
function. CATS delivers an exact solution and this tool is used to model the p–p correlation using a
Coulomb and an Argonne v18 potential [36] for the strong interaction. The known p–p interaction allows
the source size r0 to be extracted from the fit to the measured correlation function.

The second tool is the Lednický model [37], which assumes a Gaussian emission source and evaluates
the wave function in the effective-range expansion. In this approach, the interaction is parameterized
in terms of the scattering length f0 and the effective range d0. This approach produces a very accurate
approximation for C(k⇤) in case d0 . r0, while for smaller values of r0 the approximate solution may
become unstable, in particular for negative values of f0 [25]. However, it is known that the Lednický
model can be used to model the p–L correlation function even for a source size of r0 = 1.2 fm, with
a deviation from the exact solution of less than 4% [35]. It is therefore expected that this model can
successfully be used to study the L–L interaction, even in small collision systems. Nevertheless, the
validity of the approximation will be further verified in the next section.
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Fig. 1: (Color online) The a) p–p and b) p–X� correlation functions shown as a function of k
⇤. Statistical (bars)

and systematic uncertainties (boxes) are shown separately. The filled bands denote the results from the fit with
Eq. 1. Their widths correspond to one standard deviation of the systematic error of the fit. The HAL-QCD curve
uses potentials obtained from [38]. The dashed line in the right panel shows the contribution from misidentified
p–X̃� pairs from the sidebands scaled by its l parameter. See text for details.

N between the two distributions is obtained in the region k
⇤ 2 [240,340] MeV/c, where final state

interaction effects are absent and the correlation function is flat. The theoretical correlation function
C(k⇤) =

R
S(r)|yk⇤(r)|2d3

r in this work is computed with CATS [17], where r is the relative distance
between the two particles, S(r) is the source function and yk⇤(r) is the two-particle wave function. A
spherically-symmetric emitting source with a Gaussian density profile parameterized by a radius pa-
rameter r0 is assumed and Coulomb and strong potentials are considered to evaluate the relative wave
functions for p–p and p–X� pairs.

The measured correlation functions for p–p and p–X� are shown in Fig. 1. The inset in the left panel
shows a zoom of the p–p correlation function around k

⇤ = 100 MeV/c, where the effect of the repulsive
interaction can be seen. A total number of 574⇥103 (412⇥103) p–p (p–p) and 3.3⇥103 (2.6⇥103)
p–X� (p–X+) pairs contribute to A(k⇤) in the region k

⇤<200 MeV/c. The systematic uncertainties for
the p–p and p–X� correlations are obtained by varying all single-particle selection criteria for protons
and X candidates with respect to their default values such to obtain a maximum variation of the single
particle yields of ±15% . The resulting uncertainties on the correlation functions are symmetrized and
added in quadrature.
In order not to be dominated by statistical fluctuations, the systematic uncertainties are evaluated in in-
tervals of 40 MeV/c width in k

⇤ for p–p and 200 MeV/c for p–X�, and described by a second order
polynomial which serves to interpolate the final point-by-point correlated uncertainties in narrower in-
tervals. At the lowest measured k

⇤, the total systematic uncertainties are of the order of 5 % for p–p and
3.2 % for p–X�.

The experimental data are fitted with the model correlation function obtained from CATS. Together
with the genuine correlation function due to the two-particle interaction, residual correlations are also
considered. In the experiment the latter are introduced by contamination of the selected samples due
to particle misidentification and feed-down from weak decays of other particles. These are taken into
account according to

Cmodel(k
⇤) = 1+lgenuine · (Cgenuine(k

⇤)�1)+Â
ij

lij(Cij(k
⇤)�1), (1)

where Cgenuine(k⇤) is the genuine correlation function for the pairs of interest and the Cij(k⇤) represent
correlations from all other possible contributions. The parameters lij are the relative weights of these

4
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damped one can assume that Ci 6=0(k⇤)⇡ 1 [40]. The only significant contribution is p–L!p–p, where the
p–L interaction is modeled using the scattering parameters from a next-to-leading order (NLO) cEFT
calculation [41] and the corresponding correlation function is computed using the Lednický model. The
remaining residuals are considered flat, apart from p–X�!p–L, p–S0 !p–L and p–X(1530)� !p–X�,
where the interaction can be modeled. For the p–X� interaction a recent lattice QCD potential, from
the HAL QCD collaboration [42, 43], is used. The p–S0 is modeled as in [44], while p–X(1530)� is
evaluated by taking only the Coulomb interaction into account.

After all corrections have been applied to Ctot(k⇤), the final fit function is obtained by multiplying it with
a linear baseline (a+bk⇤) describing the normalization and non-femtoscopy background [25]

Cfit(k⇤) = (a+bk⇤)Ctot(k⇤). (5)

Figure 1 shows an example of the p–p and L–L correlation functions measured in pp collisions atp
s = 13 TeV, together with the fit functions. The p–p experimental data show a flat behaviour in
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Fig. 1: Results for the fit of the pp data at
p

s = 13 TeV. The p–p correlation function (left panel) is fitted with
CATS (blue line) and the L–L correlation function (right panel) is fitted with the Lednický model (yellow line).
The dashed line represents the linear baseline from Eq. 5, while the dark dashed-dotted line on top of the L–L data
shows the expected correlation based on quantum statistics alone.

the range 200 < k⇤ < 400 MeV/c, thus by default the slope of the baseline is assumed to be zero
(b = 0) and the correlation is fitted in the range k⇤ < 375 MeV/c. The resulting r0 values are 1.182±
0.008(stat)+0.005

�0.002(syst) fm in pp collisions at
p

s = 13 TeV and 1.427 ± 0.007(stat)+0.001
�0.014(syst) fm in

p–Pb collisions at
p

sNN = 5.02 TeV. In pp collisions at
p

s = 7 TeV the source size is r0 = 1.125±
0.018(stat)+0.058

�0.035(syst) fm [25].

The systematic uncertainties of the radius r0 are evaluated following the prescription established during
the analysis of pp collisions at

p
s =7 TeV [25]. The upper limit of the fit range for the p–p pairs is

varied within k⇤ 2 {350,375,400} MeV/c and the input to the l parameters is modified by 20%, keeping
primary and secondary fractions constant.

Two further systematic variations are performed for the p–p correlation. The first concerns the possible
effect of non-femtoscopy contributions to the correlation functions, which can be modeled by a linear
baseline (see Eq. 5) with the inclusion of b as a free fit parameter. The final systematic variation is to
model the p–L feed-down contribution by using a leading-order (LO) [41, 45] computation to model
the interaction. The effect of the latter is negligible, as the transformation to the p–p system smears the
differences observed in the pure p–L correlation function out.
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Fig. 3: Exclusion plot for the L–L scattering parameters obtained using the L–L correlations from pp collisions atp
s = 7 and 13 TeV as well as p–Pb collisions at

p
sNN = 5.02 TeV. The different colors represent the confidence

level of excluding a set of parameters, given in ns . The black hashed region is where the Lednický model pro-
duces an unphysical correlation. The two models denoted by colored stars are compatible with hypernuclei data,
while the red cross corresponds to the preliminary result of the lattice computation performed by the HAL QCD
collaboration. For details regarding the region at slightly negative f�1

0 and d0 < 4, compatible with a bound state,
refer to Fig. 4.

tainties are taken into account, as the systematic uncertainties are negligible according to the Barlow
criterion [38]. The predicted scattering parameters of all discussed potentials are highlighted with differ-
ent markers and the phase space region in which the Lednický model produces an unphysical correlation
is specified by the black hatched area. In this region the effective range expansion breaks down and the
Lednický equation leads to a negative correlation function. While the STAR result [24] is located in this
region, all theoretical models exclude the possibility of a repulsive L–L interaction with large effective
range. Moreover a re-analysis of the STAR data [20] demonstrated that a more realistic treatment of
the residual correlations leads to an inversion of the sign of the scattering length, that corresponds to an
attractive potential. The imposed limit on the scattering length is f�1

0 > 0.8 fm�1 [20]. This result can be
tested within the current work, and Fig. 3 demonstrates that the ALICE data can extend those constraints.
In particular the region corresponding to a strongly attractive or a very weakly binding short-range inter-
action (small | f�1

0 | and small d0) is excluded by the data, while a shallow attractive potential (large f�1
0 )

is in very good agreement with the experimental results obtained from this analysis. A L–L bound state
would correspond to negative f�1

0 and small d0 values. The present data are compatible with such a sce-
nario, but the available phase space is strongly constrained. The HKMYY [22], FG [21] and HAL QCD
[50] values are of particular interest, as the first two models are tuned to describe the modern hypernuclei
data, while the latter is the latest state-of-the-art lattice computation from the HAL QCD collaboration.
The lattice results are preliminary and predict the scattering parameters f�1

0 = 1.45± 0.25 fm�1 and
d0 = 5.16±0.82 fm [50]. All three models are compatible with the ALICE data, providing further sup-
port for a shallow attractive L–L interaction potential.
A possible bound state is investigated within the effective-range expansion by computing the correspond-
ing binding energy from the relation [51, 52]

BLL =
1

mLd2
0

✓
1�

q
1+2d0 f�1

0

◆2

. (6)

This relation is only valid for bound states, which are characterized by negative f�1
0 values. Further, the

binding energy has to be a real number, thus the expression 1+2d0 f�1
0 has to be positive, which implies

that at least one of the parameters f�1
0 or d0 has to be small in absolute value. With these restrictions
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S U M M A R Y
• New era of Dense Matter Physics

• Gravitational Wave from Binary Neutron Star merger events

• Revisit S=-1 systems 

• Neutron-rich(neutral) hypernuclei ; nnΛ, nΛ !? 

• 4ΛHe γ-ray is measured in high precision. CSB has been confirmed. 

• K-pp signals are observed in E15 

• Dawn of S=-2 spectroscopy 

• E05 observed a Ξ hyper nucleus and a double Λ excited state. 

• E07 completed the emulsion exposure in 2017; New events for ΛΛBe and Ξ-14N. 

• Femtoscopy : p-Ξ, Λ-Λ.
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