Studies of $\Lambda_c(2765)^+$ quantum numbers & other charmed baryons at Belle

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)

18th International Conference on Hadron Spectroscopy and Structure (HADRON2019)

18 Aug. 2019

Introduction – Charmed baryons

- Heavy quark in Baryon
 - Bare quark \doteqdot constituent quark
 - Makes a "static core", light quarks play around
 → Diquark correlation enhanced?
 - New symmetry heavy quark symmetry
 - \rightarrow Hyperfine doublet for heavy quark spin.

Nucleon

Charmed baryon

HQS: spin Approximately conserved

Indistinguishable pairs

Light di-quark with inert charm?

Known charmed baryons

- A few dozens of states are known
- I(J^P) are experimentally determined for very few states
- Quark model predictions are quite good up to $E_x \sim 400 \text{ MeV} \text{assignment of } I(J^P)$

 $\Lambda_{\rm c}/\Sigma_{\rm c}$ Spectrum

Both missing states & unknown states

Known charmed baryons

- A few dozens of states are known
- I(J^P) are experimentally determined for very few states
- Quark model predictions are quite good up to $E_x \sim 400 \text{ MeV} \text{assignment of } I(J^P)$
- There are many predicted states above that
 - Identification needs (at least) experimental determination of I(J^P)

This talk

- Introduces recent activities from the Belle experiment
- 1. Determination of quantum numbers of $\Lambda_{\rm c}/\Sigma_{\rm c}$ (2765)
 - Especially isospin
- 2. Confirmation of $\Xi_c(2930)$ in B decays

Almost 4π , good momentum resolution ($\Delta p/p \sim 0.1\%$), EM calorimeter, PID & Si Vertex detector

1. $\Lambda_{\rm c} / \Sigma_{\rm c}$ (2765)

First observation by CLEO

CLEO[PRL86(2001)4479]

- B decay $\rightarrow \Lambda_c^* \rightarrow \Lambda_c \pi \pi$ ($\Sigma_c \pi, \Sigma_c^* \pi$ included)
- Width~50 MeV (no uncertainty given)

Known things

- Experimentally very poor
 - $I(J^{P})$ not determined yet
 - No uncertainty on mass from CLEO
- Theoretically so many
 - Quark models: six states in this mass region
 I(J^P)= 0(1/2⁺), 0(1/2⁻), 1(1/2⁻), 1(1/2⁻), 1(3/2⁻), 1(3/2⁻)
 - Including other models, any combination of
 I=0 or 1, J=1/2 or 3/2, and P=+ or seems possible
- Experimental determination of I(J^P) is necessary to identify the nature of Λ_c / Σ_c (2765)

How to determine I(J^P)?

- Spin (J): angular distribution of the decay $\Lambda_c / \Sigma_c(2765) \rightarrow \Sigma_c^{(*)} \pi \&$ angular correlation of two pions in $\Lambda_c / \Sigma_c(2765) \rightarrow \Sigma_c^* \pi_1 \rightarrow \Lambda_c \pi_1 \pi_2$
- Parity (P): Use branching ratio (used for $\Lambda_c(2880)$) $R = \frac{\Gamma(\Lambda_c^* \to \Sigma_c^* \pi)}{\Gamma(\Lambda_c^* \to \Sigma_c \pi)}$
- Isospin (I): Search for possible isospin partners $(\Sigma_c(2765)^{++/0})$ by $\Sigma_c(2765)^{++/0} \rightarrow \Sigma_c^{++/0}\pi^0 \rightarrow \Lambda_c(2765)^+\pi^{\pm}\pi^0$

How to determine I(J^P)?

- Spin (J): angular distribution of the decay $\Lambda_c / \Sigma_c (2765) \rightarrow \Sigma_c^{(*)} \pi \& \text{ angular correlation of}$ two pions in $\Lambda_c / \Sigma_c (2765) \rightarrow \Sigma_c^* \pi_1 \rightarrow \Lambda_c \pi_1 \pi_2$
- Parity (P): Use branching ratio (used for $\Lambda_c(2880)$) $R = \frac{\Gamma(\Lambda_c^* \to \Sigma_c^* \pi)}{\Gamma(\Lambda_c^* \to \Sigma_c \pi)}$
- Isospin (I): Search for possible isospin partners $(\Sigma_c(2765)^{++/0})$ by $\Sigma_c(2765)^{++/0} \rightarrow \Sigma_c^{++/0}\pi^0 \rightarrow \Lambda_c(2765)^+\pi^{\pm}\pi^0$

Reference mode: $\Lambda_c / \Sigma_c (2765)^+ \rightarrow \Sigma_c \pi$

(a) Inclusive $\Lambda_c \pi^+ \pi^-$ (b) With Σ_c selection

- Analyzed with full data of Belle (980 fb⁻¹)
- Clear peaks are observed
- Fit with Breit-Wigner functions to extract yield.

 $\Sigma_{c}(2765)^{++/0} \rightarrow \Sigma_{c}^{++/0} \pi^{0}$

[Belle-Conf-1905, Submitted to ArXiv]

• No peak seen \rightarrow Isospin is not 1, but 0. The name is indeed $\Lambda_c(2765)$

2. E_c(2930)

Observed $\Xi_{\rm c}$ states

• Most are observed in continuum production:

$$- \Xi_{c}, \Xi_{c}, \Xi_{c}, \Xi_{c}$$
 (2645), Ξ_{c} (2790), Ξ_{c} (2815), Ξ_{c} (2970), Ξ_{c} (3055), Ξ_{c} (3080),...

 Ξ_c(2930): First reported by Babar [PRD77 031101 (2008)], in B decays, but not reported in other modes.

$E_c(2930)^0$ and $E_c(2930)^+$

Now confirmed by Belle using $(772 \pm 11) \times 10^6 B\overline{B}$ pairs

[EPJC 78, 928 and 78, 252]

• $E_c(2930)^0$: 5.1 σ significance, $M = 2928.9 \pm 3.0 \pm 3.0 \pm -12.0$ MeV

• $E_c(2930)^+$: > 3.5 σ significance, $M = 2942.3 \pm 4.4$ MeV₁₈

Can it be seen in other modes?

- Not in inclusive Λ_{c} K [Babar: PRD77.012002]
- There is a hint in $\Xi_c \pi \pi$ mode [Belle: PRD**94**, 052011], but not conclusive. Anyway much fewer than Ξ_c (2970).

• May have a different structure from others

Spin-parity?

- Spin could be determined from angular distribution, i.e., line density in the Dalitz plot, if we have enough statistics...
- We have to wait for Belle II
- Parity needs
 even more
 (polarization, ...)

Summary & Prospect

- Charmed baryons are actively studied in Belle
- Λ_c(2765): Study on I(J^P) quantum numbers are ongoing
 - Isospin (I) is determined to be 0.
 - Spin-parity (J^P) will be coming soon
 - \rightarrow We can discuss the nature of the state
- Ξ_c(2930):
 - The existence is confirmed.
 - Need Belle II statistics to determine Spin-parity
- More results are coming in the future.