Tri-hadron bound state with heavy flavor

Li Ma

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, Germany

21/08/2019
1 Introduction

2 The delocalized π bond in the DD^*K and $D\bar{D}^*K$

3 Numerical results for the Double heavy tri-meson bound states

4 Tri-meson bound state BBB^*

5 Application to the NNN system

6 Numerical results for the tri-meson bound state BBB^*
The delocalized π bond in the DD^*K

Figure: Diagrams (a), (b) and (c) are the leading OPE diagrams for the transitions among the relevant three-body channels, i.e. DD^*K, DDK^* and D^*DK channels. The TPE diagrams, i.e. (d) and (e), are the next-to-leading order contributions.

Monopole form factor $\mathcal{F}(q) = \frac{\Lambda^2 - m_\pi^2}{\Lambda^2 - q^2}$, with q the four-momentum of the pion and Λ the cutoff parameter. $\Lambda_{D^*K}, \Lambda_{DD^*}$.
Fix \(\Lambda_{D^*K} \) by reproducing the mass of \(D_{s1}(2460) \)

- \(SU(2) \) flavor symmetry. To the order \(\mathcal{O}\left(\frac{p_K}{m_K}\right) \). S-D wave mixing, and the coupled channels \(D^*K \) and \(DK^* \). With \(\Lambda_{D^*K} = 803.2 \text{ MeV} \), we find a \(D^*K \) bound state with mass at \(D_{s1}(2460) \).
- G-parity rule, i.e., \(V_{A\bar{B}} = (-1)^I G V_{AB} \). \(V_{D^*K} = V_{\bar{D}^*K} \).
- \(B^*\bar{K} \) with the mass \(5772 \text{ MeV} \). \(\Lambda_{B^*\bar{K}} = 1451.0 \text{ MeV} \).

\[\text{(b)} \]

Born-Oppenheimer (BO) approximation

- Firstly, we keep the two heavy mesons, i.e. D and D^*, at a given fixed location R and study the dynamical behavior of the light kaon.
- Then, we solve Schrödinger equation of the DD^* system with the effective BO potential created from the interaction with the kaon.
- The BO approximation is based on the factorized wave function

$$ |\Psi_T(\vec{R}, \vec{r})\rangle = |\Phi(\vec{R})\psi(\vec{r}_1, \vec{r}_2)\rangle , $$

with the two charmed mesons and the light kaon located at $\pm \vec{R}/2$ and \vec{r}. Here, $\vec{r}_1 = \vec{r} + \vec{R}/2$ and $\vec{r}_2 = \vec{r} - \vec{R}/2$ are the coordinates of the kaon relative to the first and second interacting D^*.

The delocalized π bond in the $DD^* K$ and $D\bar{D}^* K$
Numerical results for the Double heavy tri-meson bound states

When the distance R is larger than a certain value, the kaon energy of the three-body system equal to the binding energy of the isosinglet D^*K or $B^*\bar{K}$ two-body system. The two-body binding energies are from the calculations 3.

<table>
<thead>
<tr>
<th></th>
<th>DD^*K</th>
<th>$BB^*\bar{K}$</th>
<th>DD^*K</th>
<th>$BB^*\bar{K}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding energy</td>
<td>$8.29^{+4.32}_{-3.66}$</td>
<td>$41.76^{+8.84}_{-8.49}$</td>
<td>$8.29^{+6.55}_{-6.13}$</td>
<td>$41.76^{+9.02}_{-8.68}$</td>
</tr>
<tr>
<td>Mass</td>
<td>$4317.92^{+3.66}_{-4.32}$</td>
<td>$11013.65^{+8.49}_{-8.84}$</td>
<td>$4317.92^{+6.13}_{-6.55}$</td>
<td>$11013.65^{+8.68}_{-9.02}$</td>
</tr>
</tbody>
</table>

Numerical results for the Double heavy tri-meson bound states

\[\pi \quad (*) \quad (*) \quad (*) \]

\[u_{DD}^* S \quad u_{DD}^* S \]

\[
\begin{align*}
\text{(a)} & \quad 7.92 \text{ MeV} \\
\text{(b)} & \quad 1.98 \text{ MeV}
\end{align*}
\]

The red point is the critical point which indicates the lower limit of the required binding energy of the isosinglet \(D^* K \) or \(B^* \bar{K} \) to form a three-body bound state. The vertical dashed lines and bands are the central values and uncertainties of the binding energies of the two-body subsystems from the analysis \(^4\).

Aiming at the $\chi(3872)$, LHCb, Belle and BABAR have collected quite numerous data for B decays in the $J/\psi \pi \pi K$ channel. The existence of the $D\bar{D}^* K$ bound state could be checked from the experimental side by analyzing the current world data on the channels $J/\psi \pi^+ K^0$, $J/\psi \pi^0 K^+$, $J/\psi \pi^0 K^0$, and $J/\psi \pi^- K^+$.

"Numerical results for the Double heavy tri-meson bound states"
Tri-meson bound state BBB^*

The OPEP indicates that there is only one virtual pion exchanged by any two constituents as shown in the following.

Figure: Dynamical illustration of the BBB^* system with a circle describing the delocalized π bond inside. Since the three constituents have the same probabilities to be the B and B^*, one can rewrite the system as $B_a^{(*)} B_b^{(*)} B_c^{(*)}$.
The OPE interaction for the BBB^*

Under SU(2) chiral symmetry, the OPE interaction is of order $O(p^0)$ for the three-body system.

Figure: The leading order OPE diagrams for the transitions among the relevant three-body channels, i.e. $B_a^*B_bB_c$, $B_aB_b^*B_c$, $B_aB_bB_c^*$, $B_a^*B_b^*B_c$, $B_a^*B_bB_c^*$ and $B_aB_b^*B_c^*$.
Considering that the particle b and c are static with the separation r_{bc}, one can separate the degree of freedom of a from the three-body system.

We assume the distance r_{bc} is a parameter. The mesons b and c are static, and have one-pion interactions with meson a, which can be viewed as two static sources.

We explore the dynamics for the meson a in the limit $r_{bc} \to \infty$, and subtract the binding energy for the break-up state which is trivial for the three-body bound state.
Interpolating wave function of meson a

\[
\frac{1}{\sqrt{2}} \psi(\vec{r}_{ab}) |B_a^* B_b B_c\rangle + \frac{1}{\sqrt{2}} \psi(\vec{r}_{ab}) |B_a B_b^* B_c\rangle + \psi'(\vec{r}_{ab}) |B_a^* B_b^* B_c\rangle
\]

Pion exchanged between a and b.

\[
\frac{1}{\sqrt{2}} \psi(\vec{r}_{ac}) |B_a^* B_b B_c\rangle + \frac{1}{\sqrt{2}} \psi(\vec{r}_{ac}) |B_a B_b B_c^*\rangle + \psi'(\vec{r}_{ac}) |B_a B_b B_c^*\rangle
\]

Pion exchanged between a and c.

The final wave function for the meson a could be the superposition of these two components

\[
\psi(\vec{r}_{ab}, \vec{r}_{ac}) = C \left\{ \left[\frac{1}{\sqrt{2}} \psi(\vec{r}_{ab}) + \frac{1}{\sqrt{2}} \psi(\vec{r}_{ac}) \right] |B_a^* B_b B_c\rangle + \frac{1}{\sqrt{2}} \psi(\vec{r}_{ab}) |B_a B_b^* B_c\rangle \right. \\
+ \frac{1}{\sqrt{2}} \psi(\vec{r}_{ac}) |B_a B_b B_c^*\rangle + \psi'(\vec{r}_{ab}) |B_a^* B_b^* B_c\rangle + \psi'(\vec{r}_{ac}) |B_a^* B_b B_c^*\rangle \right\}
\]

Accordingly, one can obtain the energy eigenvalue of the meson a

\[
E_a(\Lambda, \vec{r}_{bc}) = \langle \psi(\vec{r}_{ab}, \vec{r}_{ac}) | H_a | \psi(\vec{r}_{ab}, \vec{r}_{ac}) \rangle
\]
BO potential and Its physical meaning (Intensity of "glue")

We define the BO potential as

\[V_{BO}(\Lambda, \vec{r}_{bc}) = E_a(\Lambda, \vec{r}_{bc}) - E_2(\Lambda). \]

The BO potential can describe the contribution for the one meson on the dynamics of the two remaining mesons. The meson \(a \) here works like a kind of "glue".

Figure: Here we chose the parameter \(\Lambda = 1440 \) MeV. \(E^{BB*}_{l=1} = -5.08 \) MeV.

\[\Psi_T = \alpha \Phi(\vec{r}_{bc}) \psi(\vec{r}_{ab}, \vec{r}_{ac}). \]
The configurations of the three-body systems

Figure: Every meson can be considered to be a lighter one and separated from the three-body system. Each of them can generate the "glue" for the remaining mesons.

Figure: (a), (b) and (c) correspond to the wave functions $\psi_a = \Phi(\vec{r}_{bc}) \psi(\vec{r}_{ab}, \vec{r}_{ac})$, $\psi_b = \Phi(\vec{r}_{ac}) \psi(\vec{r}_{ab}, \vec{r}_{bc})$ and $\psi_c = \Phi(\vec{r}_{ab}) \psi(\vec{r}_{bc}, \vec{r}_{ac})$, respectively.
Interpolating wave functions

The basis constitute a configuration space \(\{ \psi_\hat{a}, \psi_\hat{b}, \psi_\hat{c} \} \).

\[
\Psi_T = \alpha \Phi(\vec{r}_{bc})\psi(\vec{r}_{ab}, \vec{r}_{ac}) + \beta \Phi(\vec{r}_{ac})\psi(\vec{r}_{ab}, \vec{r}_{bc}) + \gamma \Phi(\vec{r}_{ab})\psi(\vec{r}_{bc}, \vec{r}_{ac})
\]

\[
= \alpha \psi_\hat{a} + \beta \psi_\hat{b} + \gamma \psi_\hat{c} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix},
\]

Expand \(\Phi(\vec{r}_{bc}) \), \(\Phi(\vec{r}_{ac}) \) and \(\Phi(\vec{r}_{ab}) \) as a set of Laguerre polynomials

\[
\chi_{nl}(r) = \sqrt{\frac{(2\lambda)^{2l+3}n!}{\Gamma(2l+3+n)}}r^l e^{-\lambda r} L_n^{2l+2}(2\lambda r), \quad n = 1, 2, 3...
\]

\[
\psi_\hat{a} = \sum_i \phi_i(\vec{r}_{bc})\psi(\vec{r}_{ab}, \vec{r}_{ac}), \quad \psi_\hat{b} = \sum_i \phi_i(\vec{r}_{ac})\psi(\vec{r}_{ab}, \vec{r}_{bc}), \quad \psi_\hat{c} = \sum_i \phi_i(\vec{r}_{ab})\psi(\vec{r}_{bc}, \vec{r}_{ac}).
\]

Here the subscript \(i \) is the order of \(\hat{i} \) Laguerre polynomials. We define the \(i^{th} \) order of the configuration functions as \(\psi^i_\hat{a} = \phi_i(\vec{r}_{bc})\psi(\vec{r}_{ab}, \vec{r}_{ac}) \), \(\psi^i_\hat{b} = \phi_i(\vec{r}_{ac})\psi(\vec{r}_{ab}, \vec{r}_{bc}) \) and \(\psi^i_\hat{c} = \phi_i(\vec{r}_{ab})\psi(\vec{r}_{bc}, \vec{r}_{ac}) \).
Orthonormalization

We orthonormalize the \(\{ \psi_{\hat{a}}, \psi_{\hat{b}}, \psi_{\hat{c}} \} \) into a new basis \(\{ \tilde{\psi}_{\hat{a}}, \tilde{\psi}_{\hat{b}}, \tilde{\psi}_{\hat{c}} \} \).

\[
\begin{align*}
\tilde{\psi}_{\hat{a}}^i &= \frac{1}{N_i} \left[(\psi_{\hat{a}}^i + \psi_{\hat{b}}^i + \psi_{\hat{c}}^i) - \sum_i x_{ij} \psi_{\hat{j}}^i \right], \\
\tilde{\psi}_{\hat{b}}^i &= \frac{1}{N_i} \left[(\psi_{\hat{a}}^i + \psi_{\hat{b}}^i + \psi_{\hat{c}}^i) - \sum_i x_{ij} \psi_{\hat{j}}^i \right], \\
\tilde{\psi}_{\hat{c}}^i &= \frac{1}{N_i} \left[(\psi_{\hat{a}}^i + \psi_{\hat{b}}^i + \psi_{\hat{c}}^i) - \sum_i x_{ij} \psi_{\hat{j}}^i \right],
\end{align*}
\]

where the \(x_{ij} \) is a parameter matrix which will be determined later. The \(N_i \) are normalization coefficients.

Then the eigenvector for the three-body system \(B_{a}^{(*)} B_{b}^{(*)} B_{c}^{(*)} \) can be written as a vector in the configuration space \(\{ \tilde{\psi}_{\hat{a}}, \tilde{\psi}_{\hat{b}}, \tilde{\psi}_{\hat{c}} \} \). Therefore, we have

\[
\Psi_T = \sum_i \tilde{\alpha}_i \tilde{\psi}_{\hat{a}}^i + \sum_j \tilde{\beta}_j \tilde{\psi}_{\hat{b}}^j + \sum_k \tilde{\gamma}_k \tilde{\psi}_{\hat{c}}^k,
\]
Application to the N^{NN} system (Triton or Helium-3 nucleus)

Figure: Dependence of the reduced three-body binding energy on the binding energy of its two-body subsystem (the deuteron). The result is comparable with the empirical binding energies of the triton (8.48 MeV) and helium-3 (7.80 MeV) nuclei.
Numerical results for the NNN system (Triton or Helium-3 nucleus)

<table>
<thead>
<tr>
<th>Λ(MeV)</th>
<th>E_2(MeV)</th>
<th>E_3(MeV)</th>
<th>E_T(MeV)</th>
<th>$V_{BO}(0)$(MeV)</th>
<th>S wave(%)</th>
<th>D wave(%)</th>
<th>r_{rms}(fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>830.00</td>
<td>-0.18</td>
<td>-1.93</td>
<td>-2.11</td>
<td>-4.54</td>
<td>94.01</td>
<td>5.99</td>
<td>4.21</td>
</tr>
<tr>
<td>850.00</td>
<td>-0.67</td>
<td>-2.71</td>
<td>-3.38</td>
<td>-5.36</td>
<td>93.36</td>
<td>6.64</td>
<td>4.00</td>
</tr>
<tr>
<td>870.00</td>
<td>-1.23</td>
<td>-3.65</td>
<td>-4.88</td>
<td>-6.32</td>
<td>92.68</td>
<td>7.32</td>
<td>3.78</td>
</tr>
<tr>
<td>890.00</td>
<td>-1.88</td>
<td>-4.77</td>
<td>-6.66</td>
<td>-7.42</td>
<td>91.99</td>
<td>8.01</td>
<td>3.54</td>
</tr>
<tr>
<td>899.60</td>
<td>-2.23</td>
<td>-5.38</td>
<td>-7.62</td>
<td>-8.00</td>
<td>91.66</td>
<td>8.34</td>
<td>3.42</td>
</tr>
<tr>
<td>900.00</td>
<td>-2.25</td>
<td>-5.41</td>
<td>-7.66</td>
<td>-8.03</td>
<td>91.64</td>
<td>8.36</td>
<td>3.42</td>
</tr>
<tr>
<td>920.00</td>
<td>-3.05</td>
<td>-6.85</td>
<td>-9.90</td>
<td>-9.35</td>
<td>90.97</td>
<td>9.03</td>
<td>3.18</td>
</tr>
<tr>
<td>940.00</td>
<td>-3.98</td>
<td>-8.51</td>
<td>-12.49</td>
<td>-10.83</td>
<td>90.35</td>
<td>9.65</td>
<td>2.95</td>
</tr>
<tr>
<td>960.00</td>
<td>-5.03</td>
<td>-10.42</td>
<td>-15.45</td>
<td>-12.46</td>
<td>89.76</td>
<td>10.24</td>
<td>2.74</td>
</tr>
<tr>
<td>980.00</td>
<td>-6.21</td>
<td>-12.57</td>
<td>-18.78</td>
<td>-14.23</td>
<td>89.23</td>
<td>10.77</td>
<td>2.54</td>
</tr>
<tr>
<td>1000.00</td>
<td>-7.55</td>
<td>-14.97</td>
<td>-22.51</td>
<td>-16.14</td>
<td>88.73</td>
<td>11.27</td>
<td>2.37</td>
</tr>
<tr>
<td>1020.00</td>
<td>-9.04</td>
<td>-17.61</td>
<td>-26.65</td>
<td>-18.19</td>
<td>88.27</td>
<td>11.73</td>
<td>2.23</td>
</tr>
<tr>
<td>1040.00</td>
<td>-10.69</td>
<td>-20.51</td>
<td>-31.20</td>
<td>-20.37</td>
<td>87.84</td>
<td>12.16</td>
<td>2.10</td>
</tr>
</tbody>
</table>

Table: Bound state solutions for the NNN system with isospin $I_3 = 1/2$. E_2 is the energy eigenvalue of its subsystem. E_3 is the reduced three-body energy eigenvalue relative to the break-up state of the NNN system. E_T is the total three-body energy eigenvalue relative to the NNN threshold.
Numerical results for the tri-meson bound state BBB^*

Table: Bound state solutions of the BBB^* with the isospin $I_3 = 3/2$. α and β are the probabilities for the components BBB^* and BB^*B^*, respectively.

<table>
<thead>
<tr>
<th>E_2(MeV)</th>
<th>E_3(MeV)</th>
<th>E_T(MeV)</th>
<th>$V_{BO}(0)$(MeV)</th>
<th>S wave(%)</th>
<th>D wave(%)</th>
<th>r_{rms}(fm)</th>
<th>α(%)</th>
<th>β(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.18</td>
<td>-0.19</td>
<td>-0.38</td>
<td>-3.43</td>
<td>99.76</td>
<td>0.24</td>
<td>3.98</td>
<td>97.50</td>
<td>2.50</td>
</tr>
<tr>
<td>-0.48</td>
<td>-0.45</td>
<td>-0.93</td>
<td>-4.88</td>
<td>99.68</td>
<td>0.32</td>
<td>3.34</td>
<td>96.39</td>
<td>3.61</td>
</tr>
<tr>
<td>-0.89</td>
<td>-0.85</td>
<td>-1.74</td>
<td>-6.62</td>
<td>99.59</td>
<td>0.41</td>
<td>2.67</td>
<td>95.02</td>
<td>4.98</td>
</tr>
<tr>
<td>-1.43</td>
<td>-1.42</td>
<td>-2.85</td>
<td>-8.56</td>
<td>99.49</td>
<td>0.51</td>
<td>2.11</td>
<td>93.78</td>
<td>6.22</td>
</tr>
<tr>
<td>-2.11</td>
<td>-2.20</td>
<td>-4.31</td>
<td>-10.65</td>
<td>99.41</td>
<td>0.59</td>
<td>1.71</td>
<td>91.91</td>
<td>8.09</td>
</tr>
<tr>
<td>-2.94</td>
<td>-3.17</td>
<td>-6.11</td>
<td>-12.87</td>
<td>99.34</td>
<td>0.66</td>
<td>1.43</td>
<td>90.22</td>
<td>9.78</td>
</tr>
<tr>
<td>-3.93</td>
<td>-4.33</td>
<td>-8.26</td>
<td>-15.21</td>
<td>99.29</td>
<td>0.71</td>
<td>1.24</td>
<td>88.47</td>
<td>11.53</td>
</tr>
<tr>
<td>-5.08</td>
<td>-5.67</td>
<td>-10.75</td>
<td>-17.65</td>
<td>99.25</td>
<td>0.75</td>
<td>1.09</td>
<td>86.69</td>
<td>13.31</td>
</tr>
<tr>
<td>-6.40</td>
<td>-7.18</td>
<td>-13.58</td>
<td>-20.19</td>
<td>99.22</td>
<td>0.78</td>
<td>0.98</td>
<td>84.91</td>
<td>15.09</td>
</tr>
<tr>
<td>-7.88</td>
<td>-8.83</td>
<td>-16.71</td>
<td>-22.83</td>
<td>99.20</td>
<td>0.80</td>
<td>0.90</td>
<td>83.14</td>
<td>16.86</td>
</tr>
<tr>
<td>-9.54</td>
<td>-10.61</td>
<td>-20.16</td>
<td>-25.55</td>
<td>99.18</td>
<td>0.82</td>
<td>0.83</td>
<td>81.40</td>
<td>18.60</td>
</tr>
<tr>
<td>-11.38</td>
<td>-12.51</td>
<td>-23.89</td>
<td>-28.36</td>
<td>99.17</td>
<td>0.83</td>
<td>0.77</td>
<td>79.70</td>
<td>20.30</td>
</tr>
<tr>
<td>-13.39</td>
<td>-14.62</td>
<td>-28.01</td>
<td>-31.24</td>
<td>99.16</td>
<td>0.84</td>
<td>0.72</td>
<td>78.07</td>
<td>21.93</td>
</tr>
<tr>
<td>-15.59</td>
<td>-16.75</td>
<td>-32.34</td>
<td>-34.20</td>
<td>99.15</td>
<td>0.85</td>
<td>0.68</td>
<td>76.50</td>
<td>23.50</td>
</tr>
<tr>
<td>-17.97</td>
<td>-18.99</td>
<td>-36.95</td>
<td>-37.24</td>
<td>99.14</td>
<td>0.86</td>
<td>0.65</td>
<td>75.01</td>
<td>24.99</td>
</tr>
</tbody>
</table>
Numerical results for the tri-meson bound state BBB^*

Figure: Here we chose the parameter $\Lambda = 1440$ MeV in (a) and $\Lambda = 1107.7$ MeV in (b) for a better comparison of all the cases, since they have the same two-body binding energy of 5.08 MeV.
Summary

- Based on the attractive force of the isosinglet D^*K and $B^*\bar{K}$ systems and the BOA method, we predict four double heavy tri-meson bound states, i.e. DD^*K, $D\bar{D}^*K$, $BB^*\bar{K}$ and $B\bar{B}^*\bar{K}$ bound states.

- Hopefully the future analysis on the B meson decay data and NN collisions may unveil the existence of the tri-meson structures.

- We also predict that a triple heavy tri-meson molecular state for the BBB^* system is probably existent as long as the molecular states of its two-body subsystem BB^* exist.

- In our calculations, we use the Born-Oppenheimer potential method to construct our interpolating wave functions, which can be regarded as a version of the variational principle which always gives an upper limit of the energy of a system.

Thank you very much!