

Deciphering the (3872) via its polarization in prompt production at the CERN LHC

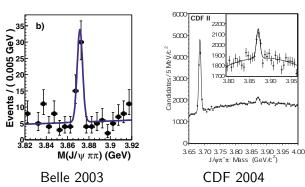
Zhi-Guo He

II. Institut für Theoretische Physik, Universität Hamburg Based on Collaboration with Butenschoen and Kniehl Phys.Rev.Lett. 123,032001,

XVIII International Conference on Hadron Spectroscopy and Structure August 16-21 2019, Guilin, China

Outline

Background


2 The polarization of X(3872)

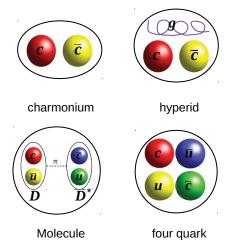
Summary

The discovery of X(3872)

• In 2003, X(3872), which is the first exotic state, was discovered by Belle Collaboriation in the final states of $J/\psi + \pi\pi$ through B meson decay. Soon afterward, it was confirmed by CDF Collaboration.

• After 10 years, it is quantum number J^{PC} is established to be 1^{++} . (LHCb 2013)

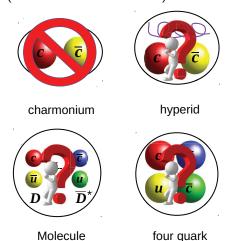
The discovery of X(3872)



- Since then dozens of exotic states, named as X, Y, Z, have been discovered at hadron and e^+e^- colliders in both $c\bar{c}$ and $b\bar{b}$ sectors.
- Theoretically, more than one thousand papers have devoted to understand their natures or explain their properties.
- These make hadron spectrum and structure become the center stage of high energy physics once more.
- However, 16 years later, for the very first state-X(3872), its nature is still mysterious.
- Now, to lift the veil of X(3872), people perform the investigation mainly from the aspects of its spectrum, decay modes and production mechanism with different hypothsis.

The Content of X(3872) I

• On the market, the models that still stay firm are:



Or, maybe it is a mixture of all the options above.

The Content of X(3872) II

• After we analzed X(3872) prompt production data, we conclude that the $\chi_{c1}(2P)$ component can not be dominant inside X(3872). (Butenschoen et al. 2013)

X(3872) hadroproduction in molecule picture

- It was first found that in molecule picture the cross section of X(3872) prompt production is one order of magnitute less than CDF measurement. (Bignamini et al. 2009)
- Later, it was pointed out that after including the rescattering mechanism, the cross section of X(3872) in molecule model can be compatible with its hadroproduction data. (Albaladejo et al. 2017)
- Now whether the molecule picture can describe X(3872) hadropoduction results is still under debate.
- To solve the puzzle, a new production channel, namely $X(3872) + \pi^{\pm}$, is suggested to measure at hadron collider. (Braaten et al. 2018)

Why study the polarization of X(3872)?

- X(3872) is a spin 1, axial vector state.
- Similar to J/ψ case, the polarization parameters in prompt production may be very sensitive to its production mechansim and its internal structure.
- What's more, if the decay of $X(3872) \to J/\psi \pi^+ \pi^-$ preserves heavy quark spin symmtry. The polarization of J/ψ from X(3872) decay can tell us the important information of $c\bar{c}$ pair inside X(3872).
- Our hypothsis is that the prompt production of X(3872) is via its $\chi_{c1}(2P)$ component, although such component is not majority inside X(3872).
- We implement NRQCD factorization formalism to calculate its polarization.

NRQCD Factorization formalism

NRQCD factorization formula for the spin density matrix:

$$\begin{split} d\sigma_{ij}(AB \to X(3872) + \text{anything}) &= \sum_{k,l,n} \int dx dy f_{k/A}(x) \\ f_{l/B}(y) \ d\hat{\sigma}_{ij}(kl \to c\overline{c}[n] + \text{anything}) \times \langle \overline{\mathcal{O}}^{X(3872)}[n] \rangle, \end{split}$$

- * $f_{k/A}(x)$ -parton distribution function.
- * $d\hat{\sigma}_{ij}(kl \to c\overline{c}[n] + \text{anything})$ -short distance coefficient
- * $\langle \overline{\mathcal{O}}^{X(3872)}[n] \rangle = \langle \mathcal{O}^{\chi_{c1}(2P)}[n] \rangle |\langle \chi_{c1}(2P)|X(3872) \rangle|^2.$
- * At v^2 LO, only the Fock states $n={}^3S_1^{[8]}$ and $n={}^3P_1^{[1]}$ are involved in.

The short distant coefficients are calculated at QCD NLO. The non-perturbative parts $\langle \overline{\mathcal{O}}^{X(3872)}[n] \rangle$ are fit to X(3872) yield data.

The prediction power of NRQCD factorization

The difference between S-wave and P-wave results at QCD NLO:

- **1** At QCD NLO, all the leading power contribution, which behaves as $1/p_T^4$, shows up for χ_{cJ} . However, for J/ψ an important integredient from CS channel is still missing.
- ② The ${}^3P_J^{[8]}$ channel, which contribute to J/ψ but not to χ_c prodution, is sensitive to the NNLO corrections.
- **3** When $p_T^{J/\psi} > 7$ GeV, the disagreement between NRQCD predictions and experimental measurements is reduced to a tolerable level.

The failure of NRQCD prediction to J/ψ polarization will not influence on the prediction power for P-wave case.

How to measure the polarization of X(3872)?

• For J/ψ , its polarization is measured through the angular distribution of I^+ in $J/\psi \to I^+I^-$ as:

$$W_{\psi}(\theta) \propto 1 + \lambda_{ heta}^{\psi} \cos^2 \theta$$
, where $\lambda_{ heta}^{\psi} = rac{\sigma_{11}^{\psi} - \sigma_{00}^{\psi}}{\sigma_{11}^{\psi} + \sigma_{00}^{\psi}}$

- Similarly, the polarization of X(3872) can also be measured through the angular distribution of its decay products, for instance that of J/ψ in the $X(3872) \to J/\psi + \pi^+\pi^-$ decay channel.
- Note that because it is a different decay mode, we should first derive out the relation between λ_{θ}^X and the spin density matrix, σ_{11}^X and σ_{00}^X .

X(3872) polarization parameter I:

- It is observed by CMS and ATLAS Collaboration that the $\pi^+\pi^-$ originate from ρ meson decay predominately.
- Therefore the decay amplitude for $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ can be expressed as following in good approximation:

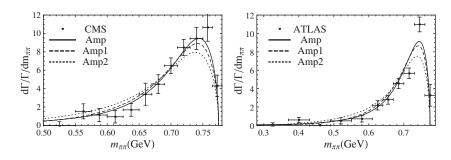
$$\mathcal{M}(X(3872) \to J/\psi + \pi^{+}\pi^{-}) = \mathcal{A}_{\mu}(X(3872) \to J/\psi\rho) \times (-g^{\mu\nu} + p^{\mu}_{\rho}p^{\nu}_{\rho}/m^{2}_{\rho})\mathrm{BW}_{\rho}(p^{2}_{\rho})\mathcal{A}_{\nu}(\rho \to \pi^{+}\pi^{-})$$

- * BW $_{\rho}(p_{\rho}^2)$ The propagator of ρ meson in Breit-Wigner form.
- $* \mathcal{A}^{
 u}(
 ho \to \pi^+\pi^-) = f_{
 ho\pi\pi}(
 ho_{\pi^+}^{
 u}
 ho_{\pi^-}^{
 u}).$

X(3872) polarization parameter II:

• Due to J^{PC} conservation, generally, $\mathcal{A}_{\mu}(X(3872) \to J/\psi \rho)$ is a linear combination of 2 independent Lorentz invariant forms:

$$\mathcal{A}_{\mu_1}(X(3872) o J/\psi
ho) \propto arepsilon_{\mu_1 \mu
u \sigma} \epsilon_X^{\mu} \epsilon_{\psi}^{*\nu} (rac{p_{
ho}^{\sigma}}{m_{
ho}} + g rac{p_{\psi}^{\sigma}}{m_{\psi}})$$


• Choosing $m_X=3.8717$, $m_{J/\psi}=3.0969$, $m_{J/\psi}=0.7753$, $m_{\pi^\pm}=0.1396$ GeV, $\Gamma_\rho=0.1491$ GeV, ${\rm BW}_\rho(p_\rho^2)=(p_\rho^2-m_\rho^2+i\Gamma_\rho\sqrt{p_\rho^2-4m_\pi^2})^{-1}$, and integrating out the $\pi^+\pi^-$ phase space numerically, we get:

$$\lambda_{\theta}^{X} = \frac{f(1-R)}{2-f+R} \text{ with } R = \frac{\sigma_{00}^{X}}{\sigma_{11}^{X}}, f = \frac{-0.56+1.28g+3.12g^{2}}{13.7+30.6g+18.2g^{2}}$$

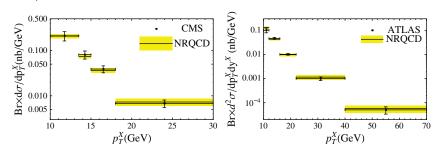
X(3872) polarization parameter III:

• The value of the weight factor $g=-0.51\pm0.10$ is fitted to the $\pi^+\pi^-$ spectrum measured by CMS and ATLAS Collaborations.

• Setting $\sigma_{00}^X=0$ and $\sigma_{11}^X=0$, we get the allowed window $-0.066 \le \lambda_{\theta}^X \le 0.141$.

The above results depend on the phase space of $\pi^+\pi^-$, so f must be recalculated according to experiment acceptance cut.

Determine the LDMEs



- The non-perturbative parameters can be obtained by fitting to X(3872) yield data measured by CDF,LHCb,CMS and ATLAS Collaborations after calculating the corresponding short distance coefficients up to QCD NLO.
- The numerical input in our NLO calculation is:
 - * PDF, α_s running– CTEQ6M set with $\Lambda_{QCD}^4 = 326$ MeV for 2-loop running.
 - * Scales of renormalization (μ_r) , factorization (μ_f) , and NRQCD (μ_{Λ}) – $\mu_r = \mu_f = \xi \sqrt{4m_c^2 + p_T^2}$, $\mu_{\Lambda} = \eta m_c$ with $m_c = 1.5$ GeV.
 - * Theoretical uncertainties–varying ξ and η from 1/2 to 2 independently around their default value 1.
- Only the product of $\langle \overline{\mathcal{O}}^X[n] \rangle$ and branching function (\mathcal{B}) of $X(3872) \to J/\psi \pi^+ \pi^-$ can be determined.

The fit results

- The fit quantify is very good with $\chi^2/d.o.f. = 7.25/9 = 0.81$ yielding $\langle \overline{\mathcal{O}}^X[^3P_1^{[1]}] \rangle \mathcal{B} = 0.34^{+0.12}_{-0.15} \times 10^{-2} \mathrm{GeV}^5$ and $\langle \overline{\mathcal{O}}^X[^3S_1^{[8]}] \rangle \mathcal{B} = 0.83^{+0.12}_{-0.16} \times 10^{-4} \mathrm{GeV}^3$.
- Comparison between fit results with CMS and ATALAS measurements of p_T^X spectra:

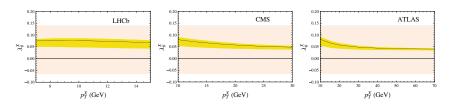
The fit results

- The integrated cross section measured by CDF and LHCb Collaborations are $\sigma^{\mathrm{prompt}}_{\mathrm{CDF}}(p\bar{p} \to X(3872) + X)\mathcal{B} = 3.1 \pm 0.7\mathrm{nb}$ and $\sigma^{\mathrm{prompt}}_{\mathrm{LHCb}}(pp \to X(3872) + X)\mathcal{B} = 4.26 \pm 1.23\mathrm{nb}$, which are also in agreement with our fitting results within error $\sigma^{\mathrm{fit}}_{\mathrm{CDF}}(p\bar{p} \to X(3872) + X)\mathcal{B} = 2.2 \pm 0.8\mathrm{nb}$ $\sigma^{\mathrm{tit}}_{\mathrm{LHCb}}(p\bar{p} \to X(3872) + X)\mathcal{B} = 5.8 \pm 1.5\mathrm{nb}$.
- If we only include CMS and ATLAS data, in which $p_T^X > 10$ GeV, we get a slightly different results, $\langle \overline{\mathcal{O}}^X [^3P_1^{[1]}] \rangle \mathcal{B} = 0.34^{+0.12}_{-0.15} \times 10^{-2} \mathrm{GeV}^5$ and $\langle \overline{\mathcal{O}}^X [^3S_1^{[8]}] \rangle \mathcal{B} = 0.83^{+0.12}_{-0.16} \times 10^{-4} \mathrm{GeV}^3$.

Excluding data from $p_T^X < 10 \text{GeV}$ region leads to a tiny effect on our predictions below!!

Impact on $\chi_{cJ}(2P)$ production

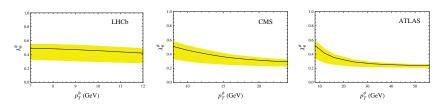
- For $n = {}^3P_1^{[1]}$ and $n = {}^3S_1^{[8]}$, the branching function $\mathcal B$ and overlap of the wave functions $|\langle \chi_{c1}(2P)|X(3872)\rangle|^2$ are common factors.
- With the help of heavy quark spin symmetry, we thus get the identity:


$$r = \frac{m_c^2 \langle \overline{\mathcal{O}}^X [^3 S_1^{[8]}] \rangle}{\langle \overline{\mathcal{O}}^X [^3 P_1^{[1]}] \rangle} = \frac{m_c^2 \langle \overline{\mathcal{O}}^{\chi_{c_1}(2P)} [^3 S_1^{[8]}] \rangle}{\langle \overline{\mathcal{O}}^{\chi_{c_1}(2P)} [^3 P_1^{[1]}] \rangle} = \frac{m_c^2 \langle \overline{\mathcal{O}}^{\chi_{c_J}(2P)} [^3 S_1^{[8]}] \rangle}{\langle \overline{\mathcal{O}}^{\chi_{c_J}(2P)} [^3 P_J^{[1]}] \rangle}$$

- It is interesting to observe that the center value of r is 0.055, which is consistent with that in 1P case, $r(1P) = 0.045 \pm 0.010$.
- Once the CS LDMEs for 2P states is known, for example from potential model calculation, we can then predict $\chi_{c_J}(2P)$ production in various environments.

X(3872) polarization at LHC

- We consider 3 setups at LHC, namely
 - * LHCb: $\sqrt{S} = 7$ TeV, $2.0 < y^X < 4.5$;
 - * CMS: $\sqrt{S} = 7 \text{ TeV}, |y^X| < 1.2;$
 - * ATLAS: $\sqrt{S} = 8 \text{ TeV}, |y^X| < 0.75.$
- Predictions of λ_{θ}^{X} in helicity frame (HX) as function of p_{T}^{X} for the 3 setups:


Conclusion

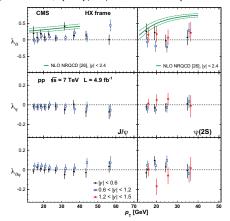
The X(3872) is largely longitudinal polarized for all the 3 setups. However the value of λ_A^X is too close to 0.

The polarization of J/ψ from X(3872) decay

- Another quantity to describe the polarization is $R = \sigma_{00}^X/\sigma_{11}^X$.
- The behaviors of R can be obtained through the relation $R = (1+15.2\lambda_{\theta}^{X})/(1-7.09\lambda_{\theta}^{X}).$
- We find for the 3 setups R behaviors are similar. At $p_T^X = 10$ GeV, R is around 5 and then goes to its asymptotic value 2.2 at large p_T^X .
- \bullet Fortunately, unlike λ_{θ}^X , the J/ψ polarization parameter λ_{θ}^X are well separated from 0.

X(3872) polarization in molecular model

- In molecular model, X(3872) is a loosely S-wave bound state of $D^0\bar{D}^{*0}+c.c.$
- $D^0(\bar{D}^0)$ is spin 0 state, so the polarization information is carried by $D^{*0}(\bar{D}^{*0})$.
- At hadron collider, $D^{*0}(\bar{D}^{*0})$ is predominately produced through the non-perturbative evolution of $c(\bar{c})$ -quark.
- We are not aware of any mechanism to in the non-perturbative evolution to result in a polarized $D^{*0}(\bar{D}^{*0})$.
- We, therefore, infer the $D^{*0}(\bar{D}^{*0})$ is unpolarized and so is X(3872).
- Actually, such argument is supported by measurement of $D^{*0}(\bar{D}^{*0})$ polarization at e^+e^- colliders at different center of mass energy.


Conclusion

In molecule model, both X(3872) and the J/ψ from its decay will be unpolarized at LHC!

Feasibility Analysis I

• Experimentally, the polarization of $\psi(2S)$ has been measured by CMS Collaboration in the range of $14 < p_T^{\psi'} < 50$ GeV and $|y^{\psi'}| < 1.2$ using 262 K $\psi(2S)\mu^+\mu^-$ events. (CMS 2013)

Feasibility Analysis II

- In the analysis of X(3872) yield, they used 11.91 K number of events collected at integration luminosity of 4.8 ${\rm fb}^{-1}$ in almost the same kinematic range, $10 < p_T^X < 50$ GeV and $|y^X| < 1.2. ({\rm CMS}\ 2013)$
- By far, the total integration luminosity they accumulated is $29.3~{\rm fb}^{-1}$ for Run I and $160~{\rm fb}^{-1}$ for Run II.
- If we assume the acceptance and efficiency did not change much during the data taken periods, we can then estimate there will be around 72.7 K (Run I) and 397 K (Run II) prompt X(3872) events available for X(3872) and J/ψ polarization analysis.

Conclusion

During the LHC Long Shutdown 2, there is a chance to obtain the polarization of X(3872) and that of J/ψ from its decay at LHC.

In summary

- In the hypothesis that prompt hdaroproduction of X(3872) is mainly through the $\chi_{c1}(2P)$ component of its short distance wave function, we predict the polarization of X(3872) and that of J/ψ from its decay.
- We find the polarization of $X(3872)(J/\psi)$ is largely longitudinal(transversal) polarized, while the prediction of molecule model is unpolarized for both.
- Such predictions can be examined now by analyzing the current data accumulated at LHC.
- This idea can also be applied to any other *X*, *Y*, *Z* state with non-zero spin.
- If the experimental results agree with our predictions, this would be a strong evidence of both our hypothesis for X(3872) and NRQCD factorization formalism for polarization of P-wave state.

