Weak Decays of doubly heavy baryons

Fu-Sheng Yu

Lanzhou University

HADRON2019 @ Guilin, 16-21 August, 2019

In collaboration with Hua-Yu Jiang, Run-Hui Li, Cai-Dian Lü, Wei Wang, Zhen-Xing Zhao, Zhi-Tian Zou

Outline

- 1. Introduction
- 2. Weak decays of doubly charmed baryons
 - Semileptonic decays
 See Xiaohui Hu's talk
 - ✓ Hadronic decays
- 3. Summary

LHCb observed doubly charmed baryon via $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ LHCb, '17, '18

with

$$m(\Xi_{cc}^{++}) = (3621.40 \pm 0.78) \text{ MeV}$$

 $\tau(\Xi_{cc}^{++}) = (2.56^{+0.24}_{-0.22} \pm 0.14) \times 10^{-13} \text{ s}$ LHCb, '18

Double-charm-baryon Searches

- · History
- Evidence
- $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ SELEX, '02 $\Xi_{cc}^+ \to p D^+ K^-$ SELEX, '04 • But not confirmed
 - $$\begin{split} \Xi_{cc}^{+} &\rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} & \text{FOCUS, '02} \\ \Xi_{cc}^{+(+)} &\rightarrow \Xi_{c}^{0} \pi^{+} (\pi^{+}) \text{ and } \Lambda_{c}^{+} K^{-} \pi^{+} (\pi^{+}) \text{ Babar, '06; Belle, '06, '13} \\ \Xi_{cc}^{+} &\rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} & \text{LHCb, '13} \end{split}$$

Double-charm-baryon Searches

- · History
- Evidence

$$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$$
 SELEX, '02 $\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ SELEX, '04
• But not confirmed

$$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$$
 FOCUS, '02
 $\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0}\pi^{+}(\pi^{+})$ and $\Lambda_{c}^{+}K^{-}\pi^{+}(\pi^{+})$ Babar,'06; Belle, '06,'13
 $\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$ LHCb, '13
Misleading !!

Double-charm-baryon Searches

- · History
- Evidence

$$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$$
 SELEX, '02 $\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ SELEX, '04
• But not confirmed

$$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$$
 FOCUS, '02

$$\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0}\pi^{+}(\pi^{+}) \text{ and } \Lambda_{c}^{+}K^{-}\pi^{+}(\pi^{+}) \text{ Babar, '06; Belle, '06, '13}$$

$$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$$
 LHCb, '13
Misleading !! 2016, LHCb Run II,
What discovery channel?

Topologies of two-body non-leptonic charmed baryon decays

Dynamics is challenging in charmed baryon decays

Hierarchy in heavy quark expansion

SCET: IC/TI~IC'/TI~IE/TI~ $O(\Lambda_{QCD}/m_Q)$, IB/EI~ $O(\Lambda_{QCD}/m_Q)$,

Leibovich, Ligeti, Stewart, Wise, '04

b decay: IC/TI~IC'/TI~IE/TI~IP/TI~ $O(\Lambda_{QCD}/m_Q)$ ~0.2 IB/EI~ $O(\Lambda_{QCD}/m_Q)$ ~0.2

c decay: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IB/EI \sim O(\Lambda_{QCD}/m_Q) \sim 1$ $IPI \sim 0$

Theoretical Framework for weak decays of charmed baryons

Short + Long distance contributions

Short-distance contributions

- external W-emission diagrams
- Calculate form factors in light-front quark model
- Calculate amplitudes using factorization approach

Transition form factors (FF) in light-front quark model

- Isospin symmetry relates FF's of Ξ_{cc}^{++} and Ξ_{cc}^{+}
- Flavor SU(3) symmetry relates FF's of $c \rightarrow s$ and $c \rightarrow d$ transitions
- Uncertainties in FFs are *c* mostly cancelled in the relative branching fractions.

$C \longrightarrow S \begin{array}{c c} \Xi_{cc} \to \Xi_c / \Xi_c'(0^+) & \Xi_{cc} \to \Xi_c / \Xi_c'(1^-) \\ f_1 & g_1 & f_2 & g_2 & f_1 & g_1 & f_2 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & \overline{\Xi}_{c} & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 & 0 \\ \hline \Pi(0) & 0 & 0 & 0 $			
	*		
	g_2^*		
$F(0) 0.75 \ 0.62 \ -0.78 \ -0.08 0.74 \ -0.20 \ 0.80 \ -$	-0.02		
$m_{\mathrm{fit}} \left 1.84 \ 2.16 \ 1.67 \ 1.29 \ \left 1.58 \ 2.10 \ 1.62 \right \right $	1.62		
δ 0.25 0.35 0.30 0.52 0.36 0.21 0.31	1.37		
$\Xi_{cc} \to \Lambda_c / \Sigma_c(0^+) \qquad \Xi_{cc} \to \Lambda_c / \Sigma_c(1^-)$	$\Xi_{cc} \to \Lambda_c / \Sigma_c(1^+)$		
$C \longrightarrow d$ $f_1 g_1 f_2 g_2 f_1 g_1 f_2$	g_2^*		
$F(0) \left 0.65 \ 0.53 \ -0.74 \ -0.05 \right 0.64 \ -0.17 \ 0.73 \ -$	-0.03		
$m_{\mathrm{fit}} \left 1.72 \ 2.03 \ 1.56 \ 1.12 \ \left 1.49 \ 1.99 \ 1.53 \ 2.03 \ 1.56 \ 1.12 \ \left 1.49 \ 1.99 \ 1.53 \ 2.03 \ 1.55 \ 2.05 \ 1.12 \ 1.49 \ 1.99 \ 1.53 \ 2.05 \ 2.05 \ 1.12 \ 1$	2.03		
δ 0.27 0.38 0.32 1.10 0.37 0.23 0.32 2	2.62		

Wang, FSY, Zhao, '17

Short-Distance Contributions

• External W-emission processes using factorization approach $A(\Xi_{cc} \rightarrow \mathcal{B}_c M)_{SD}$

$$= \frac{G_F}{\sqrt{2}} V_{cq'}^* V_{uq} a_1(a_2) \langle M | \bar{u} \gamma^\mu (1 - \gamma_5) q | 0 \rangle \langle \mathcal{B}_c | \bar{q}' \gamma_\mu (1 - \gamma_5) | \Xi_{cc} \rangle$$

Relative branching fractions are reliable

$$\begin{aligned} &\mathcal{B}(\Xi_{cc}^{+} \to \Xi_{c}^{0} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = \mathcal{R}_{\tau} = 0.25 \sim 0.37, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+} \pi^{+}) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.056, \\ &\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \ell^{+} \nu) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 0.71, \end{aligned}$$

Uncertainties of form factors are mostly cancelled

 $\mathcal{B}(\Xi_{cc}^{++}\to\Xi_c^+\pi^+)$ is the largest one

$\begin{array}{l} \text{small lifetime} \\ \text{Cabibbo-} \\ \text{suppressed} \end{array} \xrightarrow{\mathcal{B}(\Xi_{cc}^+ \to \Xi_c^0 \pi^+) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = \mathcal{R}_{\tau} = 0.25 \sim 0.37, \\ \to \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ \pi^+) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = 0.056, \\ \mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \ell^+ \nu) / \mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = 0.71, \\ \text{missing energy} \end{array}$

Other processes with large branching fractions, but

either have neutral final-state particles

$$\Xi_c^+ \rho^+ (\to \pi^+ \pi^0) \qquad \qquad \Xi_c'^+ (\to \Xi_c^+ \gamma) \pi^+$$

• or have more tracks $\Xi_c^+ a_1^+ (\to \pi^+ \pi^+ \pi^-)$

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$ is the best one to search for doubly heavy baryons among external W-emission processes

Long-distance contributions

- final-state interacting (FSI) effects

- significantly large in charm decays
- Calculate rescattering effects

Short-distance v.s. Long-distance Contributions

Br=3.4%

short-distance branching fractions

Br=0.003%

external W-emissioninternal W-emissioncolor-favoredcolor-suppressed $a_1(\mu_c)=1.07$ $a_2(\mu_c)=-0.02$

But long-distance contributions are significantly enhanced in charmed hadron decays

Indication from pure internal W-emission

Short-distance v.s.

Long-distance

Br(SD)=10⁻⁶ $la_2(\mu_c)l=0.02$

 $Br(exp)=(1.04\pm0.21)\times10^{-3}$

 $la_2^{eff}(\mu_c) = 0.7$

large-N_c limit

Understanding long-distance contributions is essential to find a best process for the searches for doubly heavy baryons

 Λ_c^+

Relative Branching Fractions with long-distance contributions

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1
Largest	pD^{*+}	0.04
	pD^+	0.0008
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{ au}/0.3) imes 0.22$
	$\Sigma_c^{++}(2455)K^-$	$(\mathcal{R}_{ au}/0.3) imes 0.008$
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$
	ΛD^+	$(\mathcal{R}_{ au}/0.3) imes 0.004$
	pD^0	$(\mathcal{R}_{ au}/0.3) imes 0.002$

Theoretical uncertainties are still very large, but reduced in the relative branching fractions

 $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \pi^{+}) = 3.4\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+} \rho^{+}) = 6.3\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \pi^{+}) = 2.4\%$ $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+} \rho^{+}) = 8.7\%$ $\eta = 1.0 \sim 2.0$

 $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \overline{K}^{*0}) = (3.8 \sim 24.6)\%$ $\times \frac{\tau_{\Xi_{cc}^{++}}}{300 \,\mathrm{fs}}$

Large enough for measurements

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

$$\Xi_{cc}^{++} \to \Sigma_c^{++} (2455) \overline{K}^{*0}$$

is actually a four-body decay

 $\Sigma_{c}^{++}(2455)$ or $\Sigma_{c}^{++}(2520)$

In charmed hadron decays, final-state particles are not energetic, and easily located in the momentum range of resonances $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++}(2455)\overline{K}^{*0}) = \left(\frac{\tau_{\Xi_{cc}^{++}}}{300 \,\mathrm{fs}}\right) \times (3.8 \sim 24.6)\%$

It would be expected to be as large as O(10%)

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \text{ V.S. } \Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$$
SELEX's discovery channel
LHCb measured

Baryons	Modes	$\mathcal{B}_{ ext{LD}}$	
$\Xi_{cc}^{++}(ccu)$	$\Sigma_c^{++}(2455)\overline{K}^{*0}$	defined as 1	$\Lambda_c^+ K^- \pi^+ \pi^+$
$\tau \times (\sim 3)$	pD^{*+}	0.04	$3r \times 5$
	pD^+	0.0008	
$\Xi_{cc}^+(ccd)$	$\Lambda_c^+ \overline{K}^{*0}$	$(\mathcal{R}_{\tau}/0.3) \times 0.22$ $(\mathcal{R}_{\tau}/0.3) \times 0.008$	$\Lambda_c^+ K^- \pi^+$
	$\Sigma_{c}^{++}(2455)K^{-}$	$(\mathcal{R}_{ au}/0.3) imes 0.008$	$\Lambda_c \Lambda \pi$
	$\Xi_c^+ ho^0$	$(\mathcal{R}_{\tau}/0.3) \times 0.04$	
	ΛD^+	$(\mathcal{R}_{\tau}/0.3) \times 0.004$	
	pD^0	$(\mathcal{R}_{ au}/0.3) imes 0.002$	

 $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ has larger branching fraction than $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

Lifetimes

Literatures	<i>Ξ_{cc}++</i> (fs)	Ξ_{cc} + (fs)
Cheng, Shi, 2018	298	45
Karliner, Rosner, 2014	185	53
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10
Kiselev, Likhoded, 2002	460±50	160±50
Chang, Li, Li, Wang, 2007	670	250

$$\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+})$$

• Longer lifetime \Rightarrow Higher efficiency to reject backgrounds in hadron colliders

Discovery Potentials of Doubly Charmed Baryons

Abstract

The existence of doubly heavy flavor baryons has not been well established experimentally so far. In this Letter we systematically investigate the weak decays of the doubly charmed baryons, Ξ_{cc}^{++} and Ξ_{cc}^{+} , which should be helpful for experimental searches for these particles. The long-distance contributions are first studied in the doubly heavy baryon decays, and found to be significantly enhanced. Comparing all the processes $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$ are the most favorable decay modes for experiments to search for doubly heavy baryons. FSY, Jiang, Li, Lü, Wang, Zhao, 1703.09086 5 MeV/c 180 - LHCb 13 TeV LHCb 🕂 Data 160 Total +Data ---- Signal -Total Candidates per --- Background 120Signal Background 100 80 July July 20 20 0 2017 3600 2018 3500 3700 3550 3600 3650 3700 3500 $m_{\rm cand}(\Xi_{cc}^{++})$ [MeV/ c^2] $m(\Xi_c^+\pi^+)$ [MeV/ c^2] $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{+}$ $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

LHCb observed Ξ_{cc}^{++}

LHCb 2012 Data

List of studies on weak decays

1. Doubly heavy baryon weak decays: $\Xi_{bc}^0 \rightarrow pK^-, \Xi_{cc}^+ \rightarrow \Sigma_c^{++}K^-$ 1701.03284

- 2. Discovery potentials of doubly charmed baryons $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \ \Xi_c^+ \pi^+$
- 3. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 1/2$ case 1707.02834

1703.09086

- 4. Weak decays of doubly heavy baryons : SU(3) analysis 1707.06570
- 5. Weak decays of doubly heavy baryons : decay constant 1711.10289
- 6. Weak decays of doubly heavy baryons : Multi-body decays 1712.03830
- 7. Weak decays of doubly heavy baryons: the $1/2 \rightarrow 3/2$ case 1805.10878
- 8. Weak decays of doubly heavy baryons: the FCNC processes 1807.03101
- 9. Weak decays of doubly heavy baryons: $\mathscr{B}_{cc} \rightarrow \mathscr{B}_{c}V$ 1810.00541
- 10. Weak decays of triply heavy baryons 1803.01476
- 11. QCD sum rules analysis of weak decays of doubly heavy 1902.01092 baryons
- 12. Light-cone sum rules analysis of $\Xi_{QQ'q} \rightarrow \Lambda_{Q'}$ weak decays 1903.03921

Prospect of theoretical studies

- 1.Discovery potentials of Xi_cc^+, Omega_cc^+
- 2.Discovery potentials of Xi_bc, Omega_bc
- 3.Semileptonic decays
- 4. Effective theory of doubly heavy baryons

5.Lifetimes?

6.New physics and CPV?

7.Omega_ccc?

.

24

Summary

- We systematically study the weak decays of doubly charmed baryons
- By comparing all the decay modes, we recommend to measure the following processes to search for doubly heavy baryons

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \qquad \Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$$

- And LHCb observed it via the both processes!
- Outlook: similar analysis to search for other particles.

Thank you!