Measurement of the CP-violating phase ϕ_s at LHCb

Xuesong Liu, on behalf of the LHCb collaboration
Tsinghua University

XVIII International Conference on Hadron Spectroscopy and Structure
August 2019, Guilin
CP-violation in B_s^0 mixing and decays, ϕ_s

\[
\phi_s = \phi_M - 2\phi_D
\]

- $\phi_s = -\arg(\lambda_f)$, $\lambda_f = \frac{q \bar{A}_f}{p A_f}$ is a mixing-induced CPV phase in B_s^0 decays
- Assuming only SM tree level contribution, $\phi_s^{SM} = -2\beta_s$ - angle in B_s^0 system analogous to β in B^0 system
- Possibility measurement in interference between B_s^0 mixing and decay.
 - via $b \to c\bar{c}s$ transitions, with decays like $B_s^0 \to J/\psi h^+h^-(h = K, \pi)$

Shanzhen Chen 17th August 2019
CP-violation in B_s^0 mixing and decays, ϕ_s

- ϕ_s is sensitive to New Physics in B_s^0 mixing,
- ϕ_s^{SM} determined via global fit to CKM matrix

\[
\phi_s^{\text{SM}} = -0.0368^{+0.0010}_{-0.0008} \text{ rad} \quad \text{[CKMFitter], no penguins}
\]

- If $\phi_s^{\text{exp}} \neq \phi_s^{\text{SM}}$, NP is found!

Golden mode:

$B_s^0 \to J/\psi(\to \mu\mu)\phi(KK)$

+ smaller weak exchange and penguin annihilation diagrams
Status of ϕ_s before Spring 2019

- World average dominated by LHCb
- Results consistent with SM-based global fits to data, but still room for NP

$\phi_s^{SM} = -0.0368^{+0.0010}_{-0.0008}$ rad [CKMFitter]

$\phi_s^{exp} = -0.021 \pm 0.031$ rad [HFLAV]
\[
\phi_s \text{ in } B_s^0 \rightarrow J/\psi K^+ K^- \text{ and } B_s^0 \rightarrow J/\psi \pi^+ \pi^-
\]

- Relatively large BF, $\mathcal{O}(10^{-3})$
- The final state is a mixture of CP-even ($L=0,2$) and CP-odd ($L=1+S$-wave) components
 - Allow to obtain $\Gamma_s = \frac{\Gamma_H + \Gamma_L}{2}$,
 - $\Delta \Gamma_s = \Gamma_L - \Gamma_H$ and $\Delta m_s = m_H - m_L$

- H : Heavy mass eigenstate
- L : Light mass eigenstate

Xuesong Liu
17th August 2019
Key ingredients

Definition of time-dependent CP asymmetry

\[A_{\text{CP}} \equiv \frac{\Gamma(B(t) - f) - \Gamma(B(t) - f)}{\Gamma(B(t) - f) + \Gamma(B(t) - f)} \approx \eta_f \sin(\phi_s) \sin(\Delta (m_s, t)) \]

Experimentally it becomes

\[A_{\text{CP}} = e^{\frac{1}{2} \Delta m_s \sigma_t^2} (1 - 2 \omega) \eta_f \sin(\phi_s) \sin(\Delta m_s t) \]

Critical requirements

- Excellent decay-time resolution \(\sigma_t \ll T \), \(B_s^0 \) oscillations fast \(T \approx 350 \text{ fs} \)
- CP eigenvalue of the final state \(\eta_f \Rightarrow \) angular analysis disentangles CP-odd and even mixture of the final states
- Tagging of meson flavor at production: probability of wrong tag \(\omega \)
- Reliable modeling of decay-time efficiency \(\epsilon(t) \) and angular efficiency \(\epsilon(\Omega) \)

Xuesong Liu

17th August 2019
New \(B_s^0 \rightarrow J/\psi K^+K^- \) \([\text{arXiv:1906.08356}]\) and \(B_s^0 \rightarrow J/\psi \pi^+\pi^- \) \([\text{PLB 797(2019) 134789}]\)

Run-II LHCb measurements with 2015 (0.3 fb-1) and 2016 (1.6 fb-1) datasets

Analysis strategy

- Combinatorial background suppressed with a BDT using kinematic variables
- Background subtracted using \(sPlot \) with \(B_s^0 \) candidate masses
- Careful study of decay-time resolution and efficiencies, angular efficiencies and flavor tagging
- \(sFit \) to 3 helicity angles and \(B_s^0 \) candidates decay time+ (\(m_{\pi\pi} \) for \(B_s^0 \rightarrow J/\psi \pi^+\pi^- \))

Xuesong Liu

17th August 2019
Background subtraction

Boosted decision tree is trained to select signal candidates

- $\Lambda^0_b \rightarrow J/\psi p K$ subtracted with negative MC weights, $B^0 \rightarrow J/\psi K^+ \pi^-$ negligible
- Mass fit: combinatorial background (exp,) and signal $B^0_s \rightarrow J/\psi K^+ K^-$

$\Lambda^0_b \rightarrow J/\psi p K$ and $B^0_s \rightarrow J/\psi \eta^*(\rightarrow \rho^0 \gamma)$ using MC shaped
- Combinatorial background estimated using wrong sign (WS) $J/\psi \pi^\pm \pi^\pm$ data

Xuesong Liu

17th August 2019
Decay-time resolution

- Pre-candidate decay-time error σ_t is calibrated using prompt J/ψ sample formed from J/ψ and two kaons (pions) from PV

\[\sigma_{\text{eff}}(B_s^0 \rightarrow J/\psi K^+ K^-) = 45.5 \text{ fs} \]

- Impact of decay-time resolution, $\Delta m_s \approx 17.7 \text{ ps}^{-1}$
 - If $\sigma_{\text{eff}} = 45 \text{ fs}$, dilution factor $e^{\frac{1}{2} \Delta m_s \sigma_t^2} = 0.73$
 - If $\sigma_{\text{eff}} = 90 \text{ fs}$, dilution factor $e^{\frac{1}{2} \Delta m_s \sigma_t^2} = 0.28$

Xuesong Liu

17th August 2019
Decay-time efficiency

- Use $B^0 \rightarrow J/\psi K^{*0}(892)$ as control channel, fit simultaneously B^0 data, simulation and B_s^0 simulation

$$\epsilon_{data}^{B_s^0}(t) = \epsilon_{data}^{B^0}(t) \times \frac{\epsilon_{MC}^{B_s^0}(t)}{\epsilon_{MC}^{B^0}(t)}$$

- Method validated with $B^+ \rightarrow J/\psi K^+$
 - $\Gamma_u - \Gamma_d = -0.0478 \pm 0.0013 \text{ ps}^{-1}$ (stat. only) vs. $(\Gamma_u - \Gamma_d)_{PDG} = -0.0474 \pm 0.0023 \text{ ps}^{-1}$

Shanzhen Chen
17th August 2019
Angular and $m_{\pi\pi}$ efficiency

- Kinematic selection and detector acceptance can cause non uniform efficiency as function of decay angles and $m_{\pi\pi}$ ($B^0_s \to J/\psi \pi^+ \pi^-$)

- Efficiencies obtained from simulation and corrected to match the data
 - Method $B^0_s \to J/\psi K^+ K^-$ validated on $B^+ \to J/\psi K^+$ and $B^0 \to J/\psi K^* \pi^+$ data, good agreement are found
Angular and $m_{\pi\pi}$ efficiency

Angular and $m_{\pi\pi}$ efficiency obtained with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ simulation

$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

[PLB 797(2019) 134789]
Flavour tagging

- Tagging power $\epsilon_{\text{tag}}(1 - 2\omega)^2$ is used to estimate the performance of flavor tagging.
- More tagging power = better exploitation of data.

$$\epsilon_{\text{tag}}(1 - 2\omega)^2 = 4.73 \pm 0.34\%$$

$$\epsilon_{\text{tag}}(1 - 2\omega)^2 = 5.06 \pm 0.38\%$$
Systematics for $B^0_s \to J/\psi K^+K^-$

| Source | ϕ_s | $|\lambda|$ | $\Gamma_s - \Gamma_d$ | $\Delta\Gamma_s$ | Δm_s | $|A_\perp|^2$ | $|A_0|^2$ | $\delta_\perp - \delta_0$ | $\delta_\parallel - \delta_0$ |
|--|------------|-------------|------------------------|------------------|--------------|-------------|----------|--------------------------|--------------------------|
| Mass: width parametrisation | - | - | - | 0.0002 | 0.001 | 0.0005 | 0.0006 | 0.05 | 0.009 |
| Mass: decay-time & angles dependence | 0.004 | 0.0037 | 0.0007 | **0.0022** | 0.016 | 0.0004 | 0.0002 | 0.01 | 0.004 |
| Multiple candidates | 0.0011 | 0.0011 | 0.0003 | 0.0001 | 0.001 | 0.0001 | 0.0006 | 0.01 | 0.002 |
| Fit bias | 0.0010 | - | - | 0.0003 | 0.001 | 0.0006 | 0.0001 | 0.02 | 0.033 |
| C_{Sp} factors | 0.0010 | 0.0010 | - | 0.0001 | 0.002 | 0.0001 | - | 0.01 | 0.005 |
| Time resolution: model applicability | - | - | - | - | 0.001 | - | - | - | 0.001 |
| Time resolution: t bias | 0.0032 | 0.0010 | 0.0002 | 0.0003 | 0.005 | - | - | 0.08 | 0.001 |
| Time resolution: wrong PV | - | - | - | - | 0.001 | - | - | - | 0.001 |
| Angular efficiency: simulated sample size | 0.0011 | 0.0018 | - | 0.001 | 0.0004 | 0.0003 | - | 0.04 | 0.004 |
| Angular efficiency: weighting | 0.0022 | **0.0043** | 0.0001 | 0.0002 | 0.001 | 0.0011 | 0.0020 | 0.01 | 0.008 |
| Angular efficiency: clone candidates | 0.0005 | 0.0014 | 0.0002 | 0.0001 | - | 0.0001 | 0.0002 | - | 0.002 |
| Angular efficiency: t & σ_t dependence | 0.0012 | 0.0007 | 0.0002 | 0.0010 | 0.003 | 0.0012 | 0.0008 | 0.03 | 0.006 |
| Decay-time efficiency: statistical | - | - | **0.0012** | 0.0008 | - | 0.0003 | 0.0002 | - | - |
| Decay-time efficiency: kinematic weighting | - | - | 0.0002 | - | - | - | - | - | - |
| Decay-time efficiency: PDF weighting | - | - | 0.0001 | 0.0001 | - | - | - | - | - |
| Decay-time efficiency: $\Delta\Gamma_s = 0$ simulation| - | - | 0.0003 | 0.0005 | - | 0.0002 | 0.0001 | - | - |
| Length scale | - | - | - | 0.004 | - | - | - | - | - |
| Quadratic sum of syst. | 0.0061 | 0.0064 | 0.0015 | 0.0026 | 0.018 | 0.0019 | 0.0024 | 0.10 | 0.037 |

[arXiv:1906.08356]

- Main systematic uncertainties on ϕ_s is flavor tagging ~ 0.015 rad, which incorporated in statistical
Systematics for $B_s^0 \to J/\psi \pi^+ \pi^-$

| Source | $\Gamma_H - \Gamma_{B^0}$ [fs$^{-1}$] | $|\lambda|$ [$\times 10^{-3}$] | ϕ_s [mrad] |
|--------------------------------|---------------------------------------|-------------------------------|-----------------|
| Decay-time acceptance | 2.0 | 0.0 | 0.3 |
| τ_{B^0} | 0.2 | 0.5 | 0.0 |
| Efficiency ($m_{\pi\pi}$, Ω) | **0.2** | 0.1 | 0.0 |
| Decay-time resolution width | 0.0 | 4.3 | 4.0 |
| Decay-time resolution mean | 0.3 | 1.2 | 0.3 |
| Background | 3.0 | 2.7 | 0.6 |
| Flavour tagging | 0.0 | 2.2 | 2.3 |
| Δm_s | 0.3 | 4.6 | 2.5 |
| Γ_L | 0.3 | 0.4 | 0.4 |
| B_c^+ | 0.5 | - | - |
| Resonance parameters | 0.6 | 1.9 | 0.8 |
| Resonance modelling | 0.5 | **28.9** | **9.0** |
| Production asymmetry | 0.3 | 0.6 | 3.4 |
| Total | 3.8 | 29.9 | 11.0 |

[PLB 797(2019) 134789]

- $\Gamma_H - \Gamma_{B^0}$ mainly affected by Efficiency of $m_{\pi\pi}$ and Ω, ϕ_s and $|\lambda|$ by resonance modeling

Xuesong Liu 17th August 2019
Results and new LHCb combination

\[B_s^0 \rightarrow J/\psi K^+ K^- \]
\[\phi_s = -0.083 \pm 0.041 \pm 0.006 \text{ rad} \]
\[|\lambda| = 1.012 \pm 0.016 \pm 0.006 \]
\[\Gamma_s - \Gamma_d = -0.0041 \pm 0.0024 \pm 0.0015 \text{ ps}^{-1} \]
\[\Delta\Gamma_s = 0.077 \pm 0.008 \pm 0.003 \text{ ps}^{-1} \]

\[B_s^0 \rightarrow J/\psi \pi^+ \pi^- \]
\[\phi_s = -0.057 \pm 0.060 \pm 0.011 \text{ rad} \]
\[|\lambda| = 1.01^{+0.08}_{-0.06} \pm 0.03 \]
\[\Gamma_H - \Gamma_{B^0} = -0.050 \pm 0.004 \pm 0.004 \text{ ps}^{-1} \]

Combination of all LHCb (Run I+II) results

\[\phi_s = -0.041 \pm 0.025 \text{ rad} \]
\[|\lambda| = 0.993 \pm 0.010 \]
\[\Gamma_s = -0.6562 \pm 0.0021 \text{ ps}^{-1} \]
\[\Delta\Gamma_s = 0.0816 \pm 0.0048 \text{ ps}^{-1} \]
HFLAV combination

\[\phi_s^{\exp} = -0.021 \pm 0.031 \text{ rad} \]
\[\Delta \Gamma_s^{\exp} = 0.0849 \pm 0.0061 \text{ ps}^{-1} \]

Reminder:
\[\phi_s^{\SM} = -0.0368^{+0.0010}_{-0.0008} \text{ rad} \] [CKMFitter]
Shanzhen Chen

Xuesong Liu

17th August 2019

HFLAV combination

$\phi_s^{\text{exp}} = -0.055 \pm 0.021 \text{ rad}$

$\Delta \Gamma_s^{\text{exp}} = 0.0764 \pm 0.0024 \text{ ps}^{-1}$

Reminder:

$\phi_s^{\text{SM}} = -0.0368^{+0.0010}_{-0.0008} \text{ rad}$ [CKMFitter]
Propects

- Include gain in trigger for $B_s^0 \rightarrow D_s^+ D_s^-$ after Upgrade 1
- Exploring new modes:
 $J/\psi (\rightarrow ee), \eta' (\rightarrow \rho^0 \gamma, \eta \pi \pi, \gamma \gamma)$
- Expect to have
 - $\sigma_{\text{stat}} \sim 4$ mrad 300 /fb ($B_s^0 \rightarrow J/\psi \phi$)
 - $\sigma_{\text{stat}} \sim 3$ mrad 300 /fb (total)
- ϕ_s would be statistically limited
Summary

- More precise measurement of ϕ_s from $b \to c\bar{c}s$ transitions using 2015-2016 data sets
- Overall picture is SM-like in ϕ_s measurements
 - Current results are mostly statistically dominated
 - Exploring new modes would improve our knowledge of ϕ_s
- LHCb 300/fb data would decrease $\sigma_{\text{stat}} \sim 3$ mrad
- Analyses of 2017-2018 data sets are ongoing and significant precision improvement of ϕ_s measurement is expected
- Stay tuned for more results in the near future!
Backups
LHCb experiments

Decay-time resolution \(\sim 50 \) fs
IP resolution \(\sim 20 \) μm

Tracking efficiency : \(> 96 \% \)
\(\Delta p/p : 0.4 - 1.0 \% \)

Muon identification :
\(\epsilon(\mu \rightarrow \mu) \sim 97 \% \) with \(\epsilon(\pi - \mu) \sim 2 \% \)

Hadron identification :
\(\epsilon(K \rightarrow K) \sim 95 \% \) with \(\epsilon(\pi - K) \sim 10 \% \)

LHCb data set

- Run I
 - 2011 1 fb\(^{-1}\), 7 TeV
 - 2012 2 fb\(^{-1}\), 8 TeV

- Run II
 - 2015 0.3 fb\(^{-1}\), 13 TeV
 - 2016 1.6 fb\(^{-1}\), 13 TeV
 - 2017 1.7 fb\(^{-1}\), 13 TeV
 - 2018 2.1 fb\(^{-1}\), 13 TeV

[IJMPA 30, 1530022 (2015), 2008 JINST 3 S08005]
Decay-time resolution

- Pre-candidate decay-time error is calibrated using prompt J/ψ sample formed from J/ψ and two kaons (pions) from PV

\[
\sigma_{\text{eff}} = \sqrt{\frac{-2}{\Delta m_s^2}} \ln D, \quad D = \sum_{i=1}^{3} f_i e^{-\sigma_i^2 \Delta m_s^2 / 2}
\]

- Fit in bins of per-event decay-time error δ_t
- Method validated in MC comparing prompt and signal resolution

Figures

- Left: LHCb data and fits for different decay-time regions.
- Right: Scatter plot showing normalized yield vs. decay-time error δ_t.

[arXiv:1906.08356]

Xuesong Liu

17th August 2019