Study of Baryon form factors at BESIII

Xiaorong Zhou (on behalf of BESIII Collaboration)
State Key Laboratory of Particle Detection and Electronics
University of Science and Technology of China

Hadron 2019, Guilin, China
8.17th, 2019
Outline

• Introduction

• Baryon Form factors
 • Nucleon form factors
 • Hyperon form factors

• Summary and prospect
Composition of the Universe

- Nucleon is the dominant component of visible universe (>99%)

- Probe nucleon charge radius:
 \[G_E(Q^2) = 1 - \frac{1}{6} r_E^2 Q^2 + \cdots \]
 (Q: four momentum transfer)

![Composition of the Universe Chart](image)

![Proton Radius Confusion Graph](image)
Nucleon Electromagnetic Form Factor (NEFF)

- Elastic scattering of electron and proton (Hofstadter, Nobel Prize 1961)
 - Theoretically, differential cross section is:
 \[
 \frac{d\sigma}{d\Omega}_{\text{el}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(1 + 2\tau\tan^2\frac{\theta}{2}\right) F(q^2)
 \]

- The nucleon electromagnetic vertex Γ_{μ} describing the hadron current:
 \[
 \Gamma_{\mu}(p', p) = \gamma_{\mu} F_1(q^2) + \frac{i\sigma_{\mu\nu} q^\nu}{2m_p} F_2(q^2)
 \]

- Sachs FFs:

 Electric FF: \(G_E(q^2) = F_1(q^2) + \tau\kappa F_2(q^2) \)
 Magnetic FF: \(G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2) \)

\[
\tau = \frac{q^2}{4m^2}, \quad \kappa = \frac{g - 2}{2}, \quad g = \frac{\mu}{J}
\]
Playground of EMFFs

- **In SL**, FFs are real.
 - Encode information about charge distribution of the nucleon
- **In TL**, FFs are complex, $|G_E/G_M|$ and $\Delta \Phi$.
 - Can be related to the time evolution of the EM charges within the nucleon
- **BESIII** has access to the FFs in TL

\[
\overline{p}p \rightarrow e^+ e^- \quad 0
\]
Measurement techniques for baryon FF

<table>
<thead>
<tr>
<th></th>
<th>Energy Scan</th>
<th>Initial State Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{beam}</td>
<td>discrete</td>
<td>fixed</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>low at each beam energy</td>
<td>high at one beam energy</td>
</tr>
<tr>
<td>σ</td>
<td>$\frac{d\sigma_{p\bar{p}}}{d(cos \theta)} = \frac{\pi \alpha^2 \beta C}{2q^2} [</td>
<td>G_M</td>
</tr>
<tr>
<td>q^2</td>
<td>single at each beam energy</td>
<td>from threshold to s</td>
</tr>
</tbody>
</table>

Both techniques, energy scan and initial state radiation, can be used at BESIII.
Status on proton FFs

• Still mystery on proton cross section line-shape

\[\sigma_{\text{point}} = \frac{\pi \alpha^2}{3m^2\tau} \left[1 + \frac{1}{2\tau} \right] \]

• Point-like cross section near threshold,

• The \(e^+e^- \rightarrow p\overline{p} \) cross section shows an exponential growth in 1 MeV interval above threshold.
Status on proton FFs

• Inconsistency on $|G_E/G_M|$ of proton & poor precision

• pQCD predicts a continuous transition and SL-TL equality at high Q^2
• SL best accuracy in $Q^2 (0.5, 8.5)$ GeV2: 1.7%
• TL accuracy before BESIII: exceeding 20%
Status on neutron FFs

- Poor precision, limited q^2 range in neutron FF

- pQCD prediction$^{[1]}$: $\left| \frac{G_M^n}{G_M^p} \right|^2 \approx \left(\frac{q_d}{q_u} \right)^2 = 0.25$

- VMD prediction$^{[2]}$: $\left| \frac{G_M^n}{G_M^p} \right|^2 \approx 1$

Beijing Electron Positron Collider (BEPCII)

E_{beam}: 1.0-2.3 GeV
σ_F: 5.16×10^{-4}
L: 1.0×10^{33} cm$^{-2}$s$^{-1}$ @3.773 GeV
BESIII detector

Main Drift Chamber
Small cell, 43 layer
\(\sigma_{xy} = 130 \, \mu m, \, dE/dx \approx 6\% \)
\(\sigma_p/p = 0.5\% \) at 1 GeV

Time Of Flight
Plastic scintillator
\(\sigma_T \) (barrel): 80 ps
\(\sigma_T \) (endcap): 110 ps
(endcap update with MRPC \(\sigma_T : 65 \, \text{ps} \))

Electromagnetic Calorimeter
CsI(Tl): \(L = 28 \, \text{cm} \) (15\(X_0 \))
Energy range: 0.02-2 GeV
Barrel \(\sigma_E \) 2.5\%, \(\sigma_t 6 \, \text{mm} \)
Endcap \(\sigma_E \) 5.0\%, \(\sigma_t 9 \, \text{mm} \)

Muon Counter
Resistive plate chamber
Barrel: 9 layers
Endcaps: 8 layers
\(\sigma_{\text{spatial}} : 1.48 \, \text{cm} \)
BESIII data samples

Scan technique

ISR technique

R scan 1.3 fb⁻¹ (130 points)
Proton FFs with ISR technique

• Combined seven data samples (7.4 fb⁻¹)

- Precision on $|G_{\text{eff}}|$: 4.1%-28.7%(untagged)
- Precision $|G_E/G_M|$ ratio: 23.0%-31.4%(untagged)
- Confirm Babar’s result on $|G_E/G_M|$ above threshold

Proton FFs with scan technique

- Precise measurement of cross section $e^+e^- \rightarrow p\bar{p}$ at 22 points from 2.0 to 3.08 GeV, 688.5 pb$^{-1}$
- $|G_E/G_M|, |G_M|$ are determined with high accuracy, with uncertainty comparable to data in SL
- $|G_E|$ is measured for the first time

Best precision on σ: 3% (systematic dominant)

Best precision on $|G_E/G_M|$: 3.4% (statistical dominant)
Proton FFs with scan technique

• Hypothesis on other results: $|G_E| = |G_M|$

• First line-shape of $|G_M|$ without hypothesis, achieved by BESIII scan data.

arxiv:1905.09001 (submit to PRL)
Oscillation structures?

• Oscillating structures observed in the EFF minus modified dipole parameterization in Babar.
 • Rescattering process in final state
 • Independent resonant structure

\[G \sim A e^{-Bp} \]
Neutron form factors at BESIII

- Analysis Challenges: Reconstruction of $e^+e^- \rightarrow n\bar{n}$
 - No MDC signal
 - Low EMC efficiency,
 - No TOF reconstruction

- Prospects:
 - BESIII new result ($s = 2.0$ to 3.08 GeV) on Neutron Form Factor is foreseen with high precision (best accuracy < 10%).
 - Measured G_E/G_M ratio for the first time.

![Graph showing neutron form factors vs. momentum](image)
Neutron form factors at BESIII

Analysis Challenges: Insufficient MC simulation

- Corrections need to be applied for MC efficiency:
 - $C_{\text{data/MC}}$: correction due to data/MC difference
 - C_{trg}: trigger efficiency correction (in dependence of total deposition energy)
Neutron form factors at BESIII

$$\sigma_{NN}^{\text{Born}}(q^2) = \frac{N_{\text{data}}}{\epsilon_{MC} \times \epsilon_{\text{cor}} \times \mathcal{L}_{\text{int}} \times (1+\delta)}$$

$$\epsilon_{\text{cor}} = \frac{C_{\text{data}}}{MC} \times C_{\text{trg}}$$
Comparison with Space-Like Results

- pQCD predicted asymptotic behavior of FFs

Figures from Prof. Vanderhaeghen
Status on hyperon FFs

• Rare experimental results on Hyperon FF

• diquark correlation evidence
• favor spin–isospin singlet
Relative phase of baryon

• Complex form of FFs:
 • $G_E = |G_E|e^{i\Phi_E}$, $G_M = |G_M|e^{i\Phi_M}$
 • Relative phase: $\Delta \Phi = \Phi_E - \Phi_M$

• A non-zero phase has polarization effect on the Baryons:
 • $P_y \propto \sin \Delta \Phi$

• The angular distribution of daughter baryon from Hyperon weak decay is:
 • $\frac{d\sigma}{d\Omega} \propto 1 + \alpha_A P_y \cdot \hat{q}$
 • α_A: asymmetry parameter
 • \hat{q}: unit vector along the daughter baryon in hyperon rest frame

With hyperon weak decay to B+P, the polarization of hyperon can be measurement, so does the relative phase between G_E and G_M!
Complete measurement of Λ EMFFs

- An event of the reaction $e^+ e^- \rightarrow \Lambda(\rightarrow p\pi^-)\overline{\Lambda}(\rightarrow \overline{p}\pi^+)$ is specified by the five dimensional vector $\xi = (\theta, \Omega_1, \Omega_2)$, the differential cross section is:

$$
\mathcal{W}(\xi) = \mathcal{T}_0(\xi) + \eta \mathcal{T}_5(\xi) \\
- \alpha_\Lambda^2 \left(\mathcal{T}_1(\xi) + \sqrt{1 - \eta^2} \cos(\Delta\Phi) \mathcal{T}_2(\xi) + \eta \mathcal{T}_6(\xi) \right) \\
+ \alpha_\Lambda \sqrt{1 - \eta^2} \sin(\Delta\Phi) \left(\mathcal{T}_3(\xi) - \mathcal{T}_4(\xi) \right).
$$

Fit data by Maximum Log Likelihood

$$
\begin{align*}
|G_E| &= 0.96 \pm 0.14\,(\text{stat.}) \pm 0.02\,(\text{sys.}) \\
|G_M| &= 0.96 \pm 0.14\,(\text{stat.}) \pm 0.02\,(\text{sys.}) \\
\Delta\Phi &= 37^\circ \pm 12^\circ\,(\text{stat.}) \pm 6^\circ\,(\text{sys.})
\end{align*}
$$

arXiv: 1903.09421 (submit to PRL)
Threshold effect

- Hyperon pair production:
 - Possibility to reconstruct hyperon pair production much close to threshold than the proton

Energy scan in 2014-2015 at BESIII
Measurement of $e^+ e^- \rightarrow \Lambda \bar{\Lambda}$ at $\sqrt{s} = 2.2324$ GeV

- Near threshold production ($2M_\Lambda + 1.0$ MeV) and small PHSP in $\Lambda/\bar{\Lambda}$ decays
- Indirect search for antiproton in $\Lambda \rightarrow p\pi^-, \bar{\Lambda} \rightarrow \bar{p}\pi^+$
- Search for mono-energetic π^0 in $\Lambda \rightarrow \bar{n}\pi^0$

- The anomalous behavior differing from the pQCD prediction at threshold is observed.

- Recalling the baryon pair production cross section:
 \[
 \sigma_{BB}(q) = \frac{4\pi\alpha^2 C}{3q^2} \left[|G_M(q)|^2 + \frac{1}{2\pi} |G_E(q)|^2 \right]
 \]
- The Coulomb correction factor $C = \frac{\pi\alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi\alpha}{\beta})}(Q)$, cancel the β for a charged BB pair, equals to 1 for a neutral BB pair.
A possible resonance around $\Lambda \bar{\Lambda}$ resonance?

• A hint for resonance around $\Lambda \bar{\Lambda}$ threshold in $e^+e^- \to KKKK$ cross section
 • Mass=2232±3.5 MeV, width=20 MeV
$e^+ e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ near kinematic threshold

Ten modes of Λ_c^+ ($\bar{\Lambda}_c^-$) are reconstructed

Measurement of the Born cross section at 4 energy points below 4.6 GeV with unprecedented statistical accuracy (~1.3% at 4.6 GeV)

Summary and discussion

- Nucleon FFs is measured with scan and ISR techniques at BESIII
 - Answered the remaining questions on proton FFs
 - Precise measurement on neutron FFs is ongoing
- With the large data set, more precise results on Hyperon FFs are expected on BESIII.
 - More precise cross section line-shape
 - Test on threshold effect
 - Complete determination of G_E and G_M

Energy scan in 2014-2015 at BESIII
Thank you for your attention!