Minkowski-space solutions of the Schwinger-Dyson equation for the fermion propagator with the rainbow-ladder truncation

Shaoyang Jia

Department of Physics and Astronomy, Iowa State University, Ames Iowa, USA

in collaboration with Pieter Maris (Iowa State Univeristy) and Tobias Frederico (Sao Paulo, Inst. Tech. Aeronautics)

August 17, 2019
Parallel Session 6, Hadron 2019
The Lagrangian of QED with massive photons

\[\mathcal{L} = \bar{\psi}(i\mathcal{D} - m_B)\psi + \frac{1}{2} A_\mu \left[g^{\mu\nu} \left(\partial^2 + m_A^2 \right) - \left(1 - \frac{1}{\xi} \right) \partial^\mu \partial^\nu \right] A_\nu, \]

(1)

with the covariant derivative defined as

\[D^\mu = \partial^\mu - ieA^\mu. \]

(2)

Here \(\psi \) is the fermion field. \(A^\mu \) are the vector boson fields. \(m_B \) is the bare mass of the fermion. \(m_A \) is the mass of the gauge boson. \(e \) is the elementary charge.

The bare propagators are given by

\[S^0_F(p) = \frac{1}{p - m_B + i\varepsilon}, \quad D^0_{\mu\nu}(q) = \frac{g_{\mu\nu} + (\xi - 1)q_\mu q_\nu/(q^2 - \xi m_A^2)}{q^2 - m_A^2 + i\varepsilon}. \]

(3)

The dressed fermion propagator \(S_F(p) \) is to be solved from its Schwinger-Dyson equation.
The Schwinger-Dyson equation for $S_F(p)$

\[S_F^{-1}(p) = p - m_B - \Sigma(p). \] \hspace{1cm} (4)

\[\Sigma(p) = -ie^2 \int d_k \gamma^\nu S_F(k) \Gamma^\mu(k, p) D_{\mu\nu}(q) \]
\[\equiv p\Sigma_v(p^2) + \Sigma_s(p^2). \] \hspace{1cm} (5)

Figure: The Schwinger-Dyson equation for the fermion propagator in QED.

Here $\Gamma^\mu(k, p)$ is the one-particle-irreducible fermion-photon vertex. In the rainbow-ladder truncation, we take $\Gamma^\mu(k, p) = \gamma^\mu$.
The Källén-Lehmann spectral representation

The spectral representation of the fermion propagator is given by

$$S_F(p) = \int_{|W|=m}^{+\infty} dW \frac{\rho(W)}{p - W + i \text{sign}(W) \varepsilon},$$ \hspace{1cm} (6)

where the support of the spectral integral is $W \in (-\infty, -m] \cup [m, +\infty)$. The spectral function $\rho(W)$ is related to two scalar spectral functions by

$$\rho(W) = \text{sign}(W)[W \rho_1(W^2) + \rho_2(W^2)],$$ \hspace{1cm} (7)

such that $S_F(p) = \rho S_v(p^2) + S_s(p^2)$ with

$$\begin{cases}
S_v(p^2) = \int_{m^2}^{+\infty} ds \frac{\rho_1(s)}{p^2 - s + i \varepsilon} \\
S_s(p^2) = \int_{m^2}^{+\infty} ds \frac{\rho_2(s)}{p^2 - s + i \varepsilon}
\end{cases}.$$ \hspace{1cm} (8)

The mass-shell pole and the branch-cuts

\[\rho_j(s) = Z_j \delta(s - m^2) + r_j(s), \quad \text{for } j \in \{1, 2\}. \]

The renormalized mass is to be solved from

\[m \in \left\{ \sqrt{p^2} \mid \forall \sqrt{p^2} \in \mathbb{R} \text{ such that } \sqrt{p^2}[1 - \Sigma_v(p^2)] = m_B + \Sigma_s(p^2) \right\}. \]

Meanwhile, the mass-pole residue is given by

\[Z = \left[1 - \Sigma_v(m^2) \right]^{-1}. \quad (9) \]

To calculate the branch-cuts of the spectral functions, define

\[A(p^2) = 1 - \Sigma_v(p^2) \quad \text{and} \quad B(p^2) = -m_B - \Sigma_s(p^2), \quad (10) \]

such that the functions \(r_{s,v}(s) \) are given by

\[
\begin{aligned}
 r_v(s) &= -\frac{1}{\pi} \text{Im} \left\{ \frac{A(s)}{A^2(s)p^2 - B^2(s)} \right\} \bigg|_{s \geq p_{th}^2} \\
 r_s(s) &= -\frac{1}{\pi} \text{Im} \left\{ \frac{-B(s)}{A^2(s)p^2 - B^2(s)} \right\} \bigg|_{s \geq p_{th}^2}.
\end{aligned}
\quad (11)
\]

Here \(p_{th}^2 \) is the threshold above which the imaginary parts of the fermion self-energy become nonzero.
The quenched approximation in the Feynman gauge

Within the quenched approximation, the fermion self-energy in the Feynman gauge ($\xi = 1$) is given by

$$\frac{\delta \Sigma_F(p)}{\delta \rho(W)} = -ie^2 \int dl \int dF^2 \frac{(2 - d)y \rho + dW}{(l^2 - \Delta + i\varepsilon)^2}, \quad (12)$$

with $\int dF^2 = \int_0^1 dx \int_0^1 dy \delta(1 - x - y)$ and

$$\Delta(x, y, m_\sigma, k^2) = x s + y m_A^2 - xy p^2 - i\varepsilon. \quad (13)$$

The imaginary part of the fermion self-energy is subsequently given by

$$-\frac{1}{\pi} \text{Im}\{\Sigma_{Fv}(p^2)\}$$

$$= \frac{\alpha}{4\pi} \int_{m_A^2} (\sqrt{p^2 - m_A^2})^2 ds \frac{p^2 - m_A^2 + s}{p^4} \sqrt{(p^2 - m_A^2 + s)^2 - 4p^2s \rho_1(s)}, \quad (14a)$$

$$-\frac{1}{\pi} \text{Im}\{\Sigma_{Fs}(p^2)\}$$

$$= \frac{\alpha}{4\pi} \int_{m_A^2} (\sqrt{p^2 - m_A^2})^2 ds \left(-\frac{4}{p^2}\right) \sqrt{(p^2 - m_A^2 + s)^2 - 4p^2s \rho_2(s)}. \quad (14b)$$
Pauli-Villars regularization

- In the Pauli-Villars regularization scheme, divergences in the fermion self-energy are removed by:

\[\Sigma_{PV}(p) = \Sigma_{bare}(p) - (m_A \to \Lambda), \quad (15) \]

where \(\Lambda > m_A \) is the mass of the regulator.

- The direct implementation of the spectral representation for the self-energy is implied in the Pauli-Villars regularization scheme due to the asymptotic behavior of \(\Sigma_{PV}(p) \).

- With dimensional regularization, subtracted spectral representation applies to the fermion-self energy.

- In other \(R_\xi \) gauges, the partial-fraction decomposition could be used to simplify the loop integral.
Numerical solution for the fermion spectral functions

Figure: $m_B = 0.5$, $\frac{e^2}{4\pi} = 0.3$, $m_A = 1$, $\Lambda = 10$. $Z = 0.9096$ and $m_R = 0.6502$.
Numerical solution for the fermion self-energy

Solutions in the spacelike region

\begin{align*}
M(p^2) &\quad F(p^2) \\
S_v &\quad S_s
\end{align*}
The Nakanishi representation of the Bethe-Salpeter vertex and amplitude for scalar bound states

\[
\begin{align*}
\frac{P}{2-k} & \quad \frac{P}{2+k} \\
\frac{P}{2-k} & \quad \frac{P}{2+k}
\end{align*}
\]

Define the Bethe-Salpeter amplitude

\[
\chi(k, k \cdot P) = \psi(k, k \cdot P) D \left(\frac{P}{2} + k \right) D \left(\frac{P}{2} - k \right), \quad (16)
\]

with \(\psi(k, k \cdot P) \) being the Bethe-Salpeter vertex.
Spectral representation for the scalar propagator

\[D(p) = \int ds \frac{\rho(s)}{p^2 - s + i\varepsilon} \]

and the Nakanishi representations for the BS vertex and the amplitude

\[\psi(k, k \cdot P) = \int d\gamma \int_{-1}^{+1} dz \frac{\phi(\gamma, z)}{(k^2 + zk \cdot P - \gamma + i\varepsilon)^n} \quad (17) \]

\[\chi(k, k \cdot P) = \int d\gamma \int_{-1}^{+1} dz \frac{\Phi(\gamma, z)}{(k^2 + zk \cdot P - \gamma + i\varepsilon)^{n+2}} \quad (18) \]

indicate the functional relation of \(\Phi \) in terms of \(\phi \) and \(\rho \).

\[\Phi(\gamma, z) = \frac{\Gamma(n+2)}{\Gamma(n)} \int ds \int dt \rho(s) \rho(t) \left[s + t + (s - t)z - 2 \left(\gamma + \frac{P^2}{4} \right) \right]^{n-1} \]

\[\times \left\{ \theta \left([s + t + (s - t)z] - 2 \left(\gamma + \frac{P^2}{4} \right) \right) \left[\int_{-1}^{z} dz' \int_{\gamma_{\text{th}}(-z, \gamma, s, -z')}^{\gamma_{\text{th}}(z, \gamma, t, z')} d\gamma' + \int_{z}^{1} dz' \int_{0}^{\gamma_{\text{th}}(z, \gamma, t, z')} d\gamma' \right] \right. \]

\[\left. - \theta \left(2 \left(\gamma + \frac{P^2}{4} \right) - [s + t + (s - t)z] \right) \left[\int_{-1}^{z} dz' \int_{\gamma_{\text{th}}(-z, \gamma, s, -z')}^{+\infty} d\gamma' + \int_{z}^{1} dz' \int_{0}^{\gamma_{\text{th}}(z, \gamma, t, z')} d\gamma' \right] \right\} \]

\[\times \left[s + t + (s - t)z' - 2 \left(\gamma' + \frac{P^2}{4} \right) \right]^{-n} \phi(\gamma', z'). \quad (19) \]

\[\gamma_{\text{th}}(z, \gamma, u, z'; P^2) \equiv \frac{(1 + z')\gamma - (z' - z) \left(u - \frac{P^2}{4} \right)}{1 + z}. \]
Specifically when $n = 1$, the result is further reduced to

$$
\Phi(\gamma, z) = \int ds \int dt \rho(s) \rho(t) \left\{ \theta \left([s + t + (s - t)z] - 2 \left(\gamma + \frac{P^2}{4} \right) \right) \times \left[\int_{-1}^{1} dz' \int_{0}^{+\infty} d\gamma' + \int_{z}^{1} dz' \int_{0}^{+\infty} d\gamma' \right] \right\}
$$

$$
- \theta \left(2 \left(\gamma + \frac{P^2}{4} \right) - [s + t + (s - t)z] \right) \times \left[\int_{-1}^{z} dz' \int_{0}^{+\infty} d\gamma' + \int_{z}^{1} dz' \int_{0}^{+\infty} d\gamma' \right] \right\}
$$

$$
\times \frac{2 \phi(\gamma', z')}{s + t + (s - t)z' - 2 \left(\gamma' + \frac{P^2}{4} \right)}, \quad (20)
$$

with $\gamma_{th}(z, \gamma, u, z'; P^2) \equiv [(1 + z')\gamma - (z' - z) (u - P^2 2/4)] /(1+z)$. With the bare propagator, $\Phi(\gamma, z)$ starts from $\Gamma_{th} = m^2 - P^2/4$.
The Bethe-Salpeter equation in the ladder truncation

\[\psi(k, k \cdot P) = ig^2 \int dq \chi(k + q, (k + q) \cdot P) D(q). \]

Figure: The diagrammatic representation of the Bethe-Salpeter equation for scalar bound states in the rainbow-ladder truncation.
The propagator of the exchange particle is given by

$$D(q) = \frac{1}{q^2 - \mu^2 - i\epsilon}.$$

With the Nakanishi representation for both the Bethe-Salpeter amplitude and the vertex, the BSE becomes

$$\int d\gamma \int dz \frac{\phi(\gamma, z)}{(k^2 + zk \cdot P - \gamma + i\epsilon)^n} = ig^2 \int dq \int d\gamma \int dz \Phi(\gamma, z) \frac{\phi(\gamma, z)}{(k + q)^2 + z(k + q) \cdot P - \gamma + i\epsilon}^{n+2} (q^2 - \mu^2 + i\epsilon)$$

which indicates

$$\phi(\gamma, z) = -\frac{g^2}{(4\pi)^2} \frac{1}{n(n + 1)} \int d\gamma' \int dz' \int_0^1 dx \Phi(\gamma', z') \frac{1}{(1 - x)^{n+1}}$$

$$\times \delta(z - z') \delta \left(\gamma - \left[\frac{\gamma'}{1 - x} + \frac{\mu^2}{x} + \frac{xz'^2 P^2}{4(1 - x)} \right] \right) \frac{\partial}{\partial \gamma}.$$
Within the condition that $\gamma + z^2 \frac{P^2}{4} \geq \mu^2$, we have

$$
\phi(\gamma, z) = -\frac{g^2}{(4\pi)^2} \frac{1}{n(n+1)} \int_{\mu^2-\gamma-z^2P^2/2}^{\gamma+\mu^2-2\mu\sqrt{\gamma+z^2P^2/4}} \Phi(\gamma', z) \sqrt{(\gamma + \mu^2 - \gamma')^2 - 4\mu^2(\gamma + z^2 P^2/4)} \\
\times \left\{ \frac{x_-(\gamma', z, \gamma)}{[1 - x_-(\gamma', z, \gamma)]^n} + \frac{x_+(\gamma', z, \gamma)}{[1 - x_+(\gamma', z, \gamma)]^n} \right\} \frac{\partial}{\partial \gamma} \\
\equiv -\Theta(\gamma, z) \frac{\partial}{\partial \gamma} \tag{23}
$$

with x_\pm given by

$$
x_\pm(\gamma', z', \gamma) = \frac{(\gamma + \mu^2 - \gamma') \pm \sqrt{(\gamma + \mu^2 - \gamma')^2 - 4\mu^2(\gamma + z'^2P^2/4)}}{2(\gamma + z'^2P^2/4)}.
$$
Specifically in the case of \(n = 1 \), \(\Theta(\gamma, z) \) is reduced to

\[
\Theta(\gamma, z) = \frac{g^2}{(4\pi)^2} \int_{\mu^2 - \gamma - z^2P^2/2}^{\gamma + \mu^2 - 2\mu \sqrt{\gamma + z^2P^2/4}} d\gamma' \frac{\gamma - \mu^2 - \gamma'}{2(\gamma' + z^2P^2/4)} \times \frac{\Phi(\gamma', z)}{\sqrt{(\gamma + \mu^2 - \gamma')^2 - 4\mu^2(\gamma + z^2P^2/4)}}.
\]

(24)

The square-root singularity is integratable with

\[
x = \text{arccosh} \frac{\gamma + \mu^2 - \gamma'}{2\mu \sqrt{\gamma + z^2P^2/4}},
\]

(25)

such that \(\gamma' = \gamma + \mu^2 - 2\mu \sqrt{\gamma + z^2P^2/4} \) \(\text{cosh} \ x \), and

\[
\Theta(\gamma, z) = \frac{g^2}{(4\pi)^2} \int_{\text{arccosh} \sqrt{\frac{\gamma + z^2P^2/4}{\mu^2}}}^{0} dx \frac{\mu \sqrt{\gamma + z^2P^2/4} \text{cosh} \ x - \mu^2}{\gamma + \mu^2 + z^2P^2/4 - 2\mu \sqrt{\gamma + z^2P^2/4} \text{cosh} \ x} \times \Phi \left(\gamma + \mu^2 - 2\mu \sqrt{\gamma + z^2P^2/4} \text{cosh} \ x, z \right).
\]

(26)

\(\Theta(\gamma, z) \) is nonvanishing when \(\gamma > \mu^2 - z^2P^2/4 \) and \(\gamma > \Gamma_{\text{th}}(z) + \mu^2 + 2\mu \sqrt{\Gamma_{\text{th}}(z) + z^2P^2/4} \).
Figure: Solution of the Nakanishi spectral functions for a scalar bound state from the Bethe-Salpeter equation in the rainbow-ladder truncation with the bare propagator, $m^2 = 1$, $P^2 = 3$, and $\mu^2 = 2$.