Recent results and prospects on ultra-peripheral heavy ion collisions at LHCb

Shanzhen Chen, on behalf of the LHCb collaboration
Universita e INFN, Cagliari

20th August 2019
Central exclusive production (CEP) and Ultra-peripheral collisions (UPC) in ion collisions

• Two nuclei bypass each other with impact parameter larger than the sum of their radii
• Collisions are ‘elastic’
• Characteristic properties
 • low momentum transfer
 • low transverse momentum
 • no additional particle production

Inelastic collisions

elastic collisions
Central exclusive production (CEP) and Ultra-peripheral collisions (UPC) in ion collisions

- \(\text{Pb} + \text{Pb} \rightarrow \text{Pb} + \text{X} + \text{Pb} \)
- Heavy ions carry a strong electromagnetic field
- EM fields of the ions can interact with each other or the nuclei via photon or ‘pomeron’

Related phenomena where the colourless object creates a particle

(Note: \(J/\psi \rightarrow \mu \mu \) and \(\chi_c \rightarrow J/\psi\gamma \))
LHCb detector

- LHCb - single armed forward spectrometer, located at LHC
- Acceptance $2 < \eta < 5$
- Proton-proton interaction at up to $\sqrt{s} = 13$ TeV
- Physics goals:
 - Designed for: CP violation in b and c sectors
 - Today: also general purpose physics in forward region

[2008 JINST 3 S08005] [IJMPA 30, 1530022 (2015)]
LHCb recorded data

- **pp collider:** 2010-2018, $\sqrt{s_{NN}} = 2.76, 5, 7, 8, 13$ TeV, $L \approx 9$ fb$^{-1}$
- **pPb collider:** 2013 and 2016, $\sqrt{s_{NN}} = 5.02$ & 8.16 TeV, $L \approx 2$ & 34 nb$^{-1}$
- **PbPb collider:** 2015 and 2018, $\sqrt{s_{NN}} = 5$ TeV, $L \approx 10$ μb$^{-1}$ & 210 μb$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
<td>JFMAMJASOND</td>
</tr>
</tbody>
</table>

- **Fixed-target mode:**
 parasitic to collider mode,
 inject noble gas into VELO,
 use non-colliding bunches

Beam Energy

<table>
<thead>
<tr>
<th>Protons (Pb) on target [10$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500 GeV</td>
</tr>
<tr>
<td>pNe</td>
</tr>
<tr>
<td>pAr</td>
</tr>
</tbody>
</table>

Fixed target mode

- $\sqrt{s_{NN}} = 110$ GeV
- $\sqrt{s_{NN}} = 69$ GeV
UPC in PbPb collisions
UPC in PbPb collisions

- First preliminary result by LHCb on PbPb collisions
- Goal is to study coherent J/ψ production in PbPb collisions at $\sqrt{s(\text{NN})} = 5\text{ TeV}$
- Data set: PbPb 2015, integrated luminosity $\sim 10\ \mu\text{b}^{-1}$
- Muons in acceptance. $\text{Pt}(J/\psi) < 1\ \text{GeV}$. Rapidity $2.0 < y < 4.5$

- Photon-induced J/ψ production cross-section is enhanced by the strong electromagnetic field of the nucleus
- The collisions are either
 - coherent, where the photon couples coherently to all nucleons
 - or incoherent, where the photon couples to a single nucleon
UPC in PbPb collisions

- Invariant mass fit
 - non-resonant: Exponential times straight line \(\propto (a + b m_{\mu+\mu^-} e^{\tau m_{\mu+\mu^-}}) \)
 - \(J/\psi \): Double sided Crystal Ball function
 - \(\psi(2S) \): Double sided Crystal Ball function with all parameters apart from normalisation and mean constrained to be identical to \(J/\psi \)

![Graph showing UPC in PbPb collisions](image)
UPC in PbPb collisions

• Transverse momentum fit
 • non-resonant: STARlight template, normalisation is fixed by Gaussian constraint to the result of the mass fit
 • incoherent J/ψ production: STARlight template, this also accounts for feeddown $\psi(2S) \rightarrow J/\psi X$
 • coherent J/ψ production: STARlight template

• The STARlight templates are from the generated events smeared with a resolution model
UPC in PbPb collisions

• Cross section for coherent J/ψ production at 5 TeV:
 • $\sigma = 5.3 \pm 0.2$ (stat) ± 0.5 (syst) ± 0.7 (lumi) mb,

• Coherent (photon couples to all nucleons) J/ψ production gives constraints to nPDF

• Uncertainty smaller than models spread

• Phenomenological models:
Hershel detector
Rapidity coverage

ALICE

ATLAS

CMS+TOTEM

LHCb

HeRSCHeL

High rapidity detector $5 < |\eta| < 9$
(since 2015)
High Rapidity Shower Counters for LHCb (HeRSCheL)
Different processes compared with the acceptance of the LHCb detector
Separation of coherent and incoherent

- If the nucleus breaks up it will leave debris in $5.0 < \eta < 7.5$
- HeRSCheL extended LHCb to observe this debris
- A reduction of the incoherent background is expected after vetoing significant energy detected in HeRSCheL
Conclusions

• LHCb has measured the cross section for coherent J/ψ production in lead-lead ultra-peripheral collisions using 2015 data
• We have potential to improve the precision of this measurement by using HeRSCheL
• We have prospects for many future analyses with 2018 data
• Stay tuned!
Backups